
Section 3.1

44. (a) Suppose rref([A|~b1]) = [B|~b2]. We’ve seen B~x = ~b2 has the same solutions

as A~x = ~b1 (since row-operations respect the notion of equality), so in par-

ticular, setting ~b1 = ~0 (so that ~b2 = ~0 too) tells us that ker(A) = ker(B).

(b) These are not always equal. Note that the image depends on the order of
the equations, which is not respected when taking rref. For example, let

A =

[
0 0
1 0

]
.

Then im(A) = span(~e2), but rref(A) =

[
1 0
0 0

]
, and so im(B) = span(~e1).

Section 3.2

1. This one isn’t a subspace for many reasons. For example, note that ~v =

1
0
0

 is

in W , but 2~v isn’t and ~v +~v isn’t. Also, ~0 isn’t in W , so in fact W fails all three
properties (though it only needs to fail one to not be a subspace).

2. This one is “really close” to being a subspace, but it isn’t closed under multipli-

cation by a negative scalar. For example, ~v =

1
2
3

 is in W , but −~v isn’t.

3. This is a subspace by Thm. 3.2.2.

8. For example,

[
1
2

]
− 2

[
2
3

]
+

[
3
4

]
=

[
0
0

]
.

42. Let c1 ~v1 + · · · + cm ~vm = ~0. We wish to show that all of the scalars ci = 0. For
any i, consider the dot product

(c1 ~v1 + · · ·+ cm ~vm) · ~vi = ~0 · ~vi,

which simplifies to
c1(~v1 · ~vi) + · · ·+ cm( ~vm · ~vi) = 0.

Since the vi are perpendicular unit vectors, ~vj · ~vi = 0 whenever i 6= j and
~vi · ~vi = 1 for any i. Thus, the above simplifies to ci = 0 and so repeating this
for i = 1, . . . ,m, we see that c1 = · · · = cm = 0 and so we have only the trivial
relation among the vectors ~v1, . . . ~vm and so they are linearly independent.
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Section 3.3

33. Let A =
[
c1 . . . cn

]
(a 1 × n matrix). Then V = ker(A). At least one of the

ci is nonzero, so rank(A) = 1. By the Rank-Nullity Theorem, dim(V ) = n − 1.
A hyperplane in R3 is a plane and a hyperplane in R2 is a line. (This is a good
problem to remember; hyperplanes are common and this result will save you
time in calculating their dimension.)

35. Case in point, if ~v =

v1
...

vn

 and we let ~x =

x1
...

xn

, then all vectors ~x are perpen-

dicular to ~v if and only if they satisfy the equation ~v · ~x = 0, which can also be
expressed as v1x1 + · · ·+ vnxn = 0. This is a hyperplane and ~v 6= ~0, so by #33,
the dimension of this space is n− 1.

78. Suppose that V is an m-dimensional space with basis ~v1, . . . , ~vm. As they are a
basis, they are in particular linearly independent. Then, if ~w1, . . . , ~wq is any set
of vectors which spans V , it follows that q ≥ m by Thm. 3.3.1.

Section 3.4

37. We want to find a basis B = {~v1, ~v2} such that T (~v1) = a~v1 and T (~v2) = b~v2 for
some scalars a and b, as then the B-matrix of T will be

B =
[
[T (~v1)]B [T (~v2)]B

]
=

[
a 0
0 b

]
,

which is diagonal.

One strategy is to note that T (~v) = ~v = 1~v for any ~v parallel to the line L onto

which we project and T (~w) = ~0 = 0~w for any ~w perpendicular to L. Thus, we
can find a basis with the desired properties by picking one vector parallel to L

and one vector perpendicular to L. For example, B = {
[
1
2

]
,

[
−2
1

]
}.

In this case, B =

[
1 0
0 0

]
.
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