Section 3.1

44. (a) Suppose $\operatorname{rref}\left(\left[A \mid \overrightarrow{b_{1}}\right]\right)=\left[B \mid \overrightarrow{b_{2}}\right]$. We've seen $B \vec{x}=\overrightarrow{b_{2}}$ has the same solutions as $A \vec{x}=\overrightarrow{b_{1}}$ (since row-operations respect the notion of equality), so in particular, setting $\overrightarrow{b_{1}}=\overrightarrow{0}$ (so that $\overrightarrow{b_{2}}=\overrightarrow{0}$ too) tells us that $\operatorname{ker}(A)=\operatorname{ker}(B)$.
(b) These are not always equal. Note that the image depends on the order of the equations, which is not respected when taking rref. For example, let $A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right]$.
Then $\operatorname{im}(A)=\operatorname{span}\left(\overrightarrow{e_{2}}\right)$, but $\operatorname{rref}(A)=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$, and so im $(B)=\operatorname{span}\left(\overrightarrow{e_{1}}\right)$.

Section 3.2

1. This one isn't a subspace for many reasons. For example, note that $\vec{v}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is in W, but $2 \vec{v}$ isn't and $\vec{v}+\vec{v}$ isn't. Also, $\overrightarrow{0}$ isn't in W, so in fact W fails all three properties (though it only needs to fail one to not be a subspace).
2. This one is "really close" to being a subspace, but it isn't closed under multiplication by a negative scalar. For example, $\vec{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]$ is in W, but $-\vec{v}$ isn't.
3. This is a subspace by Thm. 3.2.2.
4. For example, $\left[\begin{array}{l}1 \\ 2\end{array}\right]-2\left[\begin{array}{l}2 \\ 3\end{array}\right]+\left[\begin{array}{l}3 \\ 4\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
5. Let $c_{1} \overrightarrow{v_{1}}+\cdots+c_{m} \overrightarrow{v_{m}}=\overrightarrow{0}$. We wish to show that all of the scalars $c_{i}=0$. For any i, consider the dot product

$$
\left(c_{1} \overrightarrow{v_{1}}+\cdots+c_{m} \overrightarrow{v_{m}}\right) \cdot \overrightarrow{v_{i}}=\overrightarrow{0} \cdot \overrightarrow{v_{i}}
$$

which simplifies to

$$
c_{1}\left(\overrightarrow{v_{1}} \cdot \overrightarrow{v_{i}}\right)+\cdots+c_{m}\left(\overrightarrow{v_{m}} \cdot \overrightarrow{v_{i}}\right)=0
$$

Since the v_{i} are perpendicular unit vectors, $\overrightarrow{v_{j}} \cdot \overrightarrow{v_{i}}=0$ whenever $i \neq j$ and $\overrightarrow{v_{i}} \cdot \overrightarrow{v_{i}}=1$ for any i. Thus, the above simplifies to $c_{i}=0$ and so repeating this for $i=1, \ldots, m$, we see that $c_{1}=\cdots=c_{m}=0$ and so we have only the trivial relation among the vectors $\overrightarrow{v_{1}}, \ldots \overrightarrow{v_{m}}$ and so they are linearly independent.

Section 3.3

33. Let $A=\left[\begin{array}{lll}c_{1} & \ldots & c_{n}\end{array}\right]$ (a $1 \times n$ matrix). Then $V=\operatorname{ker}(A)$. At least one of the c_{i} is nonzero, so $\operatorname{rank}(A)=1$. By the Rank-Nullity Theorem, $\operatorname{dim}(V)=n-1$. A hyperplane in \mathbb{R}^{3} is a plane and a hyperplane in \mathbb{R}^{2} is a line. (This is a good problem to remember; hyperplanes are common and this result will save you time in calculating their dimension.)
34. Case in point, if $\vec{v}=\left[\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right]$ and we let $\vec{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$, then all vectors \vec{x} are perpendicular to \vec{v} if and only if they satisfy the equation $\vec{v} \cdot \vec{x}=0$, which can also be expressed as $v_{1} x_{1}+\cdots+v_{n} x_{n}=0$. This is a hyperplane and $\vec{v} \neq \overrightarrow{0}$, so by $\# 33$, the dimension of this space is $n-1$.
35. Suppose that V is an m-dimensional space with basis $\overrightarrow{v_{1}}, \ldots, \overrightarrow{v_{m}}$. As they are a basis, they are in particular linearly independent. Then, if $\overrightarrow{w_{1}}, \ldots, \overrightarrow{w_{q}}$ is any set of vectors which spans V, it follows that $q \geq m$ by Thm. 3.3.1.

Section 3.4

37. We want to find a basis $\mathcal{B}=\left\{\overrightarrow{v_{1}}, \overrightarrow{v_{2}}\right\}$ such that $T\left(\overrightarrow{v_{1}}\right)=a \overrightarrow{v_{1}}$ and $T\left(\overrightarrow{v_{2}}\right)=b \overrightarrow{v_{2}}$ for some scalars a and b, as then the \mathcal{B}-matrix of T will be

$$
B=\left[\begin{array}{ll}
{\left[T\left(\overrightarrow{v_{1}}\right)\right]_{\mathcal{B}}} & {\left[T\left(\overrightarrow{v_{2}}\right)\right]_{\mathcal{B}}}
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right],
$$

which is diagonal.

One strategy is to note that $T(\vec{v})=\vec{v}=1 \vec{v}$ for any \vec{v} parallel to the line L onto which we project and $T(\vec{w})=\overrightarrow{0}=0 \vec{w}$ for any \vec{w} perpendicular to L. Thus, we can find a basis with the desired properties by picking one vector parallel to L and one vector perpendicular to L. For example, $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right\}$.
In this case, $B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$.

