Section 2.1

8. $x_{1}=-20 y_{1}+7 y_{2}, x_{2}=3 y_{1}-y_{2}$.
9. The matrix is invertible, with inverse $\left[\begin{array}{cc}1 & -k \\ 0 & 1\end{array}\right]$.

Section 2.2

4. This is a 45° clockwise rotation with a scaling factor of $\sqrt{2}$. See Thm. 2.2.4.
5. $\left[\begin{array}{c}10 / 9 \\ 5 / 9 \\ 10 / 9\end{array}\right]$.

Section 2.3

36. $A^{2}=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$,
$A^{3}=\left[\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right]$,
$A^{4}=\left[\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right]$.
Continuing the pattern, $A^{1001}=\left[\begin{array}{cc}1 & 1001 \\ 0 & 1\end{array}\right]$. These matrices represent horizontal shears along the x-axis. The shear strength increases linearly with each application of the matrix A.

Section 2.4

32. Use Thm. 2.4.9. We need to have

$$
A^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

Equating entries, we have $b=c=0$ and $a=d$. Since $a d-b c=1$, it must be $a=d= \pm 1$, so the only two matrices A that satisfy this requirement are I_{2} and $-I_{2}$. (Verify that these two satisfy the given conditions.)
42. By swapping rows appropriately, we can row-reduce any permutation matrix to the identity matrix, so all permutation matrices are invertible. The inverse is also a permutation matrix, since all steps in row-reducing $\left[A \mid I_{n}\right]$ are row swaps.
67. False; $(A+B)^{2}=A^{2}+A B+B A+B^{2}$. The formula in the book holds only if the matrices A and B commute.
69. False; one counterexample is $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], B=\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$
75. True; use Theorem 2.4.7 and the fact that the inverse of the inverse is the matrix itself (by Theorem 2.4.6).

