Section 2.2, part 2

13. We know that $\operatorname{proj}_{L}(\vec{x})=\left[\begin{array}{cc}u_{1}^{2} & u_{1} u_{2} \\ u_{1} u_{2} & u_{2}^{2}\end{array}\right]$, so

$$
\operatorname{ref}_{L}(\vec{x})=2 \operatorname{proj}_{L}(\vec{x})-\vec{x}=\left[\begin{array}{cc}
2 u_{1}^{2}-1 & 2 u_{1} u_{2} \\
2 u_{1} u_{2} & 2 u_{2}^{2}-1
\end{array}\right] .
$$

Let $a=2 u_{1}^{2}-1$ and $b=2 u_{1} u_{2}$. Note the sum of the diagonal entries

$$
\left(2 u_{1}^{2}-1\right)+\left(2 u_{2}^{2}-1\right)=2\left(u_{1}^{2}+u_{2}^{2}\right)-2=0
$$

since \vec{u} is a unit vector. Thus, $2 u_{2}^{2}-1=-a$, so the matrix has the form $\left[\begin{array}{cc}a & b \\ b & -a\end{array}\right]$ as required.
Finally, $a^{2}+b^{2}=\left(2 u_{1}^{2}-1\right)^{2}+\left(2 u_{1} u_{2}\right)^{2}=4 u_{1}^{4}-4 u_{1}^{2}+1+4 u_{1}^{2} u_{2}^{2}$. Rewrite the final u_{2}^{2} as $\left(1-u_{1}^{2}\right)$ and this simplifies to $a^{2}+b^{2}=1$. (Alternatively, note that $\left.4 u_{1}^{4}-4 u_{1}^{2}+1+4 u_{1}^{2} u_{2}^{2}=4 u_{1}^{2}\left(u_{1}^{2}-1+u_{2}^{2}\right)=0.\right)$
17. First, solve

$$
\left[\begin{array}{cc}
a & b \\
b & -a
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right] .
$$

That is, we want to row-reduce the augmented matrix $\left[\begin{array}{cc|c}(a-1) & b & 0 \\ b & -(a+1) & 0\end{array}\right]$.
Dividing the first row by $(a-1)$ gives $\left[\begin{array}{cc|c}1 & \frac{b}{a-1} & 0 \\ b & -(a+1) & 0\end{array}\right]$.
Subtracting b times the first row from the second and getting a common denominator in the second row,
$\left[\begin{array}{cc|c}1 & \frac{b}{a-1} & 0 \\ 0 & \frac{1-\left(a^{2}+b^{2}\right)}{a-1} & 0\end{array}\right]$.
Since $a^{2}+b^{2}=1$, the second row is all zeroes, which gives us infinitely many solutions of the form $\left[\begin{array}{c}b t \\ (1-a) t\end{array}\right]$.
We only need one solution, so let $t=1$, for example. Then $\vec{v}=\left[\begin{array}{c}b \\ 1-a\end{array}\right]$. (Note this is nonzero unless $a=1$ and $b=0$. In this special case, let $\vec{v}=\overrightarrow{e_{1}}$ and $\vec{w}=\overrightarrow{e_{2}}$ instead.)
We could compute \vec{w} by the same technique, or we could note that \vec{v} and \vec{w} are going to end up being perpendicular, and use the equation $\vec{v} \cdot \vec{w}=0$ to solve for
\vec{w}. (If you use the latter technique, be sure to verify that $A \vec{w}=-\vec{w}$. If you use the former technique, be sure to verify that $\vec{v} \cdot \vec{w}=0$.) This gives $\vec{w}=\left[\begin{array}{c}a-1 \\ b\end{array}\right]$. Define the line L to be the span of the vector \vec{v}. Then we may write any \vec{x} in \mathbb{R}^{2} as

$$
\vec{x}=\overrightarrow{x^{\|}}+\overrightarrow{x^{\perp}}=c \vec{v}+d \vec{w}
$$

for some scalars c and d.
Then

$$
T(\vec{x})=A(c \vec{v}+d \vec{w})=c A \vec{v}+d A \vec{w}=c \vec{v}-d \vec{w}=\overrightarrow{x^{\|}}-\overrightarrow{x^{\perp}}=\operatorname{ref}_{L}(\vec{x}) .
$$

