Section 1.1

20. Begin by setting up equations. The total demand for the product of Industry A is 1000 (from consumbers) plus $0.1 b$ (from Industry B), so that the output a must satisfy $a=1000+0.1 b$. Setting up a similar equation for b from the demand for the product of Industry B, we obtain the system
$\left|\begin{array}{cccc}a & - & 0.1 b & = \\ -0.2 a & + & b & = \\ -000\end{array}\right|$,
which yields the unique solution $a=1100, b=1000$.
21. Hint: In order to come up with equations, think what it means for the points to lie on the graph. For example, $(1,-1)$ lies on the graph, so $f(1)=-1$. That is, $a+b(1)+c\left(1^{2}\right)=-1$, or $a+b+c=-1$. Use the other points to find two other equations, then solve.

Section 1.2

4. $x=2, y=-1$.
5. (b) and (d) are in rref. (a) isn't since the third column contains two leading ones. (c) isn't since the third row contains a leading one, but the second row does not.

Section 1.3

4. This matrix has rref $\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 0\end{array}\right]$, so it has rank 2.
5. (a) $A \overrightarrow{e_{1}}=\left[\begin{array}{l}a \\ d \\ g\end{array}\right]$,

$$
\begin{aligned}
& A \overrightarrow{e_{2}}=\left[\begin{array}{l}
b \\
e \\
h
\end{array}\right], \\
& A \overrightarrow{e_{3}}=\left[\begin{array}{l}
c \\
f \\
k
\end{array}\right] .
\end{aligned}
$$

(b) $B \overrightarrow{e_{1}}=\overrightarrow{v_{1}}, B \overrightarrow{e_{2}}=\overrightarrow{v_{2}}, B \overrightarrow{e_{3}}=\overrightarrow{v_{3}}$.
36. Use $\# 34$ to see that $A=\left[\begin{array}{lll}1 & 4 & 7 \\ 2 & 5 & 8 \\ 3 & 6 & 9\end{array}\right]$.

