
This collection of problems is intended as a challenge, as a way of examining
some of the more interesting uses of what we’ve seen, and as an introduction to some
generalizations of some of these ideas that you might encounter in later courses. Some
are straight-forward, while some are broad and only amorphously defined. Some are
easy, while some are quite difficult and some may be impossible (but I don’t think so).
Don’t worry if you can’t do all of them: that was my intention. You do not need to
attempt these problems if you don’t want to. None of these will be collected. These
haven’t been thoroughly proofread, but I’m pretty sure that all of the statements in
the problems are true. If not, correct them before proving them.

1 Chapter 6 Challenge Problems

Book
Section 6.1: 58 (partial answer: (a) can’t be done, (b) can be done), 62-66 (answer
to #66b: basis is {det(A)}, so the dimension is 1)
Section 6.2: 44, 45 (use the Laplace expansion defined on p. 270 on the first column),
48, 49 (start by doing this with an upper-triangular matrix, then modify it to make
the entries below the diagonal nonzero too), 50 (answer: 1), 55 (this is used to define
the determinant at the graduate level)

More problems

1. UseQR factorization and our theorems about determinants to show that | det(A)|
is the volume of the parallelepiped formed by the columns of A.

2. Recall the Vandermonde determinant from #31 in Section 6.2.

Use Vandermonde determinants to show that the linear transformation

T (f) =

f(a0)
...

f(an)


from Pn to Rn+1 is an isomorphism for any distinct scalars a0, . . . , an.

3. Use Vandermonde determinants to show that there is a unique polynomial of de-
gree ≤ n that passes through the data points {(x1, y1), . . . , (xn, yn), (xn+1, yn+1)}
if and only if no two points have the same x-coordinate.

4. Use Vandermonde determinants to show that given any n + 1 distinct real
numbers t0, . . . , tn and any n + 1 real numbers y0, . . . , yn, there is a unique
function of the form f(x) = a0e

t0x + · · · + ane
tnx that satisfies the constraints

f(0) = y0, f
′(0) = y1, . . . , f

(n)(0) = yn.
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5. Given n vectors ~v1, . . . , ~vn in RN (for some fixed N), we define the Gram matrix
Gram(~v1, . . . , ~vn) to be the n × n matrix whose ijth entry is ~vi · ~vj. Then, we
define Gram determinant or Gramian G(~v1, . . . , ~vn) to be the determinant of
Gram(~v1, . . . , ~vn). Show that:

(a) For any vectors ~v1, . . . , ~vn in RN , G(~v1, . . . , ~vn) ≥ 0.

(b) More generally, Gram(~v1, . . . , ~vn) is positive semi-definite, which means that

~vTGram(~v1, . . . , ~vn)~v ≥ 0

for all vectors ~v in Rn. (Compare this with the definition of positive definite
in #6 of the Chapter 5 Challenge Problems.)

(c) Gram(~v1, . . . , ~vn) is positive definite if and only if G(~v1, . . . , ~vn) > 0 if and
only if ~v1, . . . , ~vn are linearly independent.

(d) G(~v1, . . . , ~vn) is the square of the volume of the parallelepiped formed by
~v1, . . . , ~vn.

(e) The n = 2 case of parts (a) and (c) above is (after rearrangement) something
we saw in Chapter 5. What?

(To this end, it’s useful to first prove the following:

Let A be a (real) symmetric n× n matrix which is positive definite and let ~v in

Rn be any vector. Then (A~v) · ~v = 0 if and only if A~v = ~0.)

6. Let V be an inner product space. Generalize the above problem to V , using the
inner product on V in place of the dot product.

2 Chapter 7 Challenge Problems

Book
Section 7.1: 44, 45, 47, 48
Section 7.2: 14, 29, 30, 31, 33, 36
Section 7.3: 38
Section 7.4: 56, 57, 69
Section 7.5: 30-32

More problems

1. We’ve seen that finding the eigenvalues requires us to factor the characteristic
polynomial. However, in practice, this polynomial may be hard to factor and
we may need to approximate the roots numerically (e.g., λ ≈ 1.2837193). If
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we only have an approximation to the eigenvalue, our technique for finding the
corresponding eigenvectors needs to be changed too. If we have an approxima-
tion to the eigenvalue, how can we find an approximation to the eigenvector?
How good do these approximations need to be in order to be find approximate
solutions for the kinds of problems we’re interested in (e.g, dynamical systems,
calculating large powers of matrices)?

2. What is the relation between the eigenvalues of A and the eigenvalues of rref(A)?
Are they always the same? Are certain particular eigenvalues always the same?
How do the algebraic and geometric multiplicities change?

3. Use the previous problem to give a direct proof of: “0 fails to be an eigenvalue of
A if and only if rref(A) = In.” (We saw this in class as part of Summary 7.1.5,
but used kernels in our proof there. Do this without referencing kernels.)

4. Let λ1, . . . , λm be the eigenvalues of the n× n matrix A, repeated according to
algebraic multiplicity and listed in terms of decreasing absolute value. Describe
the long term behavior of the dynamical system ~x(t) = At ~x0 in terms of the
eigenvalues of A. (Hint: Usually, it’s enough to look at only λ1, but you’ll need
to do a bit more if −λ1 is also an eigenvalue of A.)

5. Let V be a finite dimensional vector space and T a linear transformation from
V to V . State and prove an analogue of Summary 7.1.5 (p. 305 in the book).

6. Given a polynomial
f(x) = amx

m + · · ·+ a1x+ a0

from R to R, consider the related “matrix polynomial” (which we’ll call by the
same name as f)

f(M) = amM
m + · · ·+ a1M + a0In

from Rn×n to Rn×n. Let A be an n×n matrix. Let ~v be an eigenvector of A with
associated eigenvalue λ. Let g(x) be a polynomial and g(M) be the associated
matrix polynomial. Show that ~v is an eigenvector of g(A) with eigenvalue g(λ).
That is, that g(A)~v = g(λ)~v. Compare with #1-4 in Section 7.1.

7. Let fA(λ) be the characteristic polynomial of a matrix A and fA(M) be the
associated matrix polynomial of fA (as in problem #6 above). Use #6 to show
that fA(A) is not an invertible matrix. (Hint : Show that 0 is an eigenvalue of
fA(A).)

8. We can say something even better in the above problem, by proving the Cayley-
Hamilton Theorem: Let fA(λ) be the characteristic polynomial of a matrix A
and fA(M) be the associated matrix polynomial of fA (as in problem #6 above).
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Then fA(A) = 0 (where 0 denotes the zero matrix). (Hint: One way of doing
this is presented in problem #54 of Section 7.3. Try it on your own first, since
there are other ways of approaching the problem. If you have trouble doing it in
general, try proving it for the special case where A is diagonalizable, using #70
of Section 7.4.)

9. We say that an n × n matrix is a transition matrix if all of its entries are
nonnegative and if the sum of the entries in each column is 1. (Equivalently,
if for each column ~v, we have ~v · (~e1 + · · · + ~en) = 1.) (See #25, 30, and 31
in Section 7.2 and #30 of Section 7.5 for a closely related concept, the regular
transition matrix, in which we add the extra restriction that no entry is 0.) Give
a real-world interpretation of transition matrices and use this interpretation to
explain the results in Section 7.2, #30 and 31 and Section 7.5, #30 in real-world
terms. (Hint: #4 above will help.)

10. As we defined them, discrete linear dynamical systems seem to be unable to
model phenomena that involve more than one recursive term, or which involve
adding a constant. For example, we’d have trouble modeling the system given
by

an+2 = 2an+1 + 3an + 4bn+1 + 5bn + 6

bn+2 = 7an+1 + 8an + 9bn+1 + 10bn + 11

with initial conditions a0 = 12, a1 = 13, b0 = 14, b1 = 15. (The specific numbers
aren’t important Replace them with arbitrary constants if you’d like.)

However, despite this impression, we can model this as a dynamical system. Do
#42, 45, and 48 in Section 7.3 and use the same ideas to set up the above as a
dynamical system.

Hint: You’ll probably want to define ~x(t) =



at+2

at+1

at

bt+2

bt+1

bt
1


.

(Or, since we’re most interested in at+2 and bt+2, you can rearrange the compo-
nents so that these two come first, if you wish.) Note that as in our examples in
class, the switch from n to t is purely notational.

11. (the pièce de résistance) We’ve seen that we can also write sequences as functions,
so we could write a(t) instead of at. We’ll do that in this problem, as we’re going
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to use subscripts for something else. Thus, the system in the above problem can
be rewritten as

a(n+ 2) = 2a(n+ 1) + 3a(n) + 4b(n+ 1) + 5b(n) + 6

b(n+ 2) = 7a(n+ 1) + 8a(n) + 9b(n+ 1) + 10b(n) + 11

and if also rename our sequences a1 and a2 (so, a1(n) = a(n) and a2(n) = b(n)),
this becomes

a1(n+ 2) = 2a1(n+ 1) + 3a1(n) + 4a2(n+ 1) + 5a2(n) + 6

a2(n+ 2) = 7a1(n+ 1) + 8a1(n) + 9a2(n+ 1) + 10a2(n) + 11.

Suppose we have sequences a1(t), . . . , am(t) for some positive integer m and
scalars p1, . . . , pm, d1 . . . , dm, and chij for 1 ≤ h ≤ m, 1 ≤ i ≤ m and 0 ≤ j < pi

and consider the system

a1(t+ p1) =

(
m∑

i=1

pi−1∑
j=0

c1ijai(t+ j)

)
+ d1

a2(t+ p2) =

(
m∑

i=1

pi−1∑
j=0

c2ijai(t+ j)

)
+ d2

...

ak(t+ pk) =

(
m∑

i=1

pi−1∑
j=0

ckijai(t+ j)

)
+ dk

...

am(t+ pm) =

(
m∑

i=1

pi−1∑
j=0

cmijai(t+ j)

)
+ dm

(with some appropriate initial conditions.)

It’s more convenient to have all of the entries on the left line up, so we’ll rewrite
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this as

a1(t) =

(
m∑

i=1

pi−1∑
j=0

c1ijai(t− p1 + j)

)
+ d1

a2(t) =

(
m∑

i=1

pi−1∑
j=0

c2ijai(t− p2 + j)

)
+ d2

...

ak(t) =

(
m∑

i=1

pi−1∑
j=0

ckijai(t− pk + j)

)
+ dk

...

am(t) =

(
m∑

i=1

pi−1∑
j=0

cmijai(t− pm + j)

)
+ dm.

Define ~x(t) and a matrix A so that the above is given by the dynamical system
~x(t+ 1) = A~x(t). What are the dimensions of ~x(t) and of A? Set up the initial
conditions above explicitly, and use them to find ~x(0). Can you say anything
in general about the form of A? (Hint : think block matrices) Can you say
anything in general about the eigenvalues of A? (Hint : start with the special
case in which A is block upper-triangular (meaning that A can be written as
a block matrix in which the all blocks below the “block diagonal” are the zero

matrix, so for example


1 1 2 2
1 1 2 2
0 0 3 3
0 0 3 3

 is block upper-triangular with 2×2 blocks)

by generalizing Section 7.2, #14. What does the condition that A is block upper-
triangular tell you about the coefficients chij? Note: The block upper-triangular
case is hard but doable; I’m not sure what the answer is in the general case.)

(To help you get started, I’ll give you ~x(t). If you want to find it on your own,
stop reading now.)
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~x(t) =



a1(t)
a1(t− 1)

...
a1(t− p1)
a2(t)

...
a2(t− p2)

...
am(t)

...
am(t− pm)

1



,

so that ~x(t) is in Rs where

s =

(
m∑

i=1

(pi + 1)

)
+ 1 =

(
m∑

i=1

pi

)
+m+ 1.

Or, you can rearrange the order of these components if you wish (especially if
doing so gives your matrix a nicer form!).
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