
This collection of problems is intended as a challenge, as a way of examining
some of the more interesting uses of what we’ve seen, and as an introduction to some
generalizations of some of these ideas that you might encounter in later courses. Some
are straight-forward, while some are broad and only amorphously defined. Some are
easy, while some are quite difficult and some may be impossible (but I don’t think so).
Don’t worry if you can’t do all of them: that was my intention. You do not need to
attempt these problems if you don’t want to. None of these will be collected. These
haven’t been thoroughly proofread, but I’m pretty sure that all of the statements in
the problems are true. If not, correct them before proving them.

1 Chapter 4 Challenge Problems

Book
Section 4.1: 46, 47 (additionally, do #47 for a finite dimensional subspace V of
F(R,R): how do the bases of the spaces in #47 relate to the basis of V ?), 57, 58
Section 4.2: 70, 74, 83
4.3: 68 (can you generalize it?), 69, 71 (why is the hint true? Generalize the hint to
other problems.)

More problems

1. Let V = {f in C∞ | f ′′(x) − f(x) = 0}. Show that U = {sinhx, coshx} and
B = {ex, e−x} are two bases of V . Show that ex = sinhx + coshx and e−x =
− sinhx + coshx. Use these facts to find the change of basis matrix SB→U and
invert it to find SU→B. Use this to verify that sinhx = ex−e−x

2
and cosh x =

ex+e−x

2
. (We’ve seen pieces of this problem in class.)

2. Let V1 = {f in C∞ | f ′′(x)−f(x) = 0} and let V2 = {f in C∞ | f ′′(x)+f(x) = 0}.
Let V = {f in C∞ | f (4)(x) − f(x) = 0}. How do the bases of V1 and V2 relate
to the basis of V ? Then, explain why (nonetheless) the following proposition is
false: “If f (4)(x) = f(x), then either f ′′(x) = f(x) or f ′′(x) = −f(x).” Modify
it to make it true.

3. Recall your work on #47 in Section 4.1. Explain why the following proposition
is false: “If f(x) is any function, then either f(−x) = f(x) or f(−x) = −f(x).”
Then, modify it to make it true (as in the previous problem). (Hint: You might
want to work in an arbitrary finite dimensional subspace instead of the entire
space F(R,R) so that you have a basis. This will work, so long as you choose
your vector space so that it contains f(−x) whenever it contains f(x).)
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4. Let V = {
[
a
b

]
in R2 | b > 0} be endowed with the operations

[
a1

b1

]
+

[
a2

b2

]
=

[
a1 + a2

b1b2

]
,

k

[
a
b

]
=

[
ka
bk

]
.

Show that V is a vector space. Show that V is isomorphic to R2 by finding an
isomorphism between them. Explain why the condition b > 0 was included in
the definition of V .

5. Let Va be the set of Taylor series centered at x = a with infinite radius of
convergence. Show that Va is a vector space for every real number a. Given any
real numbers a and b, show that Va ∼= Vb by finding an isomorphism between
them.

6. Let S and T be subsets of the real numbers. Let F(S, T ) be the set of func-
tions with domain S and target space T (that is, their range is a subset of T ),
endowed with the standard operations of function addition and scalar multipli-
cation. (Note that we’ve seen the space F(R,R) in class.) What conditions are
necessary on S and T for F(S, T ) to be a vector space? (Hint: If it is a vector
space, it’ll be a subspace of F(R,R).) Answer the same questions for D(S, T )
(differentiable functions from S to T ) and C(S, T ) (continuous functions from S
to T ).

7. Let V and W be arbitrary vector spaces. Show that L(V,W ) (the set of linear
transformations from V to W ) is a vector space. If V and W are finite dimen-
sional, show that L(V,W ) is isomorphic to Rn×m for some positive integers n
and m. (If you have trouble, start with the special case V = W .)

8. Let V be the set of continuous functions f in F(R,R) which satisfy the property
f(a + b) = f(a) + f(b) for all real numbers a and b. Show that V is a vector
space. Show that V is isomorphic to R. (This is hard.)

9. Let V be the set of continuous functions f in F(R,R) which satisfy the property
f(a + b) = f(a)f(b) for all real numbers a and b. Show that V is not a vector
space when endowed with the addition and scalar multiplication rules of F(R,R).
Can you find different rules for addition and scalar multiplication such that V
is a vector space? If so, show that V is isomorphic to R. (This is really hard.)
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10. Let V be a finite-dimensional subspace of F(R,R) with basis B. Let B be the
B-matrix of the linear transformation T (f) = f ′. Describe the B-matrix of the
linear transformation S(f) = a0f + a1f

′ + a2f
′′ + · · · + anf

(n) in terms of the
matrix B.

11. Let V be a finite-dimensional vector space and T be a linear transformation
from V to W . Let f1, . . . , fm be a basis for ker(T ) and h1, . . . , hn be a basis for
im(T ). Pick g1, . . . , gn in V such that T (gi) = hi for i = 1, . . . , n. Show that
f1, . . . , fm, g1, . . . , gn is a basis for V .

12. Is there a vector space V with the property that for every vector space W , V is
isomorphic to a subspace of W?

13. Let a be a real number and define the map La from F(R,R) to R by La(f) =
f(a). Show that La is a linear transformation. Find im(La) and ker(La). (La is
sometimes called the evaluation map.)

14. Let V1 = span{sinx, cosx} and V2 = span{sinhx, coshx}. Define the transfor-
mation T (f) = f ′ on both of these spaces and find the B-matrix of T where
B = {sinx, cosx} and B = {sinhx, coshx} respectively. Interpret these matrices
geometrically. Draw a coordinate plane with perpendicular axes labeled “sinx”
and “cosx” (and, respectively “sinh x” and “coshx”). Does T act like you’d ex-
pect geometrically? Can you find any other vector spaces in which the B-matrix
of the linear transformation T has a geometric interpretation? Is there a reason
why, or is it just a coincidence?

15. When we defined vector spaces, our definition stated that all scalars came from
R. This condition is actually unnecessary, and only defines a special type of
vector space called an R-vector space. We say that a set F is a field if you can
add, subtract, multiply, and divide by nonzero elements in F (this is an informal
definition). The notion of a vector space can be generalized to a F -vector space,
by taking scalars from F instead of R. Some examples of fields are Q (the
rational numbers), R (the real numbers), and C (the complex numbers). Show
that Rn is a Q-vector space and an R-vector space, but not a C-vector space.
Show that it is infinite dimensional as a Q-vector space (this is hard). Show
that Cn is an R-vector space and a C-vector space. Compute its dimension as
an R-vector space and as a C-vector space.

16. Z (the integers) is not a field since we can’t do division in it (e.g., 3÷ 2 doesn’t
have an answer in the integers). Why does this matter? What problems would
we face if we tried to construct a “Z-vector space?” (Hint: Consider the relation
between redundant vectors and linear independence.)
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17. Let V = {f in C∞(C,C) | f ′′(x) + f(x) = 0} be a C-vector space. (C∞(C,C)
is like C∞, except from functions on C instead of R.) Assuming that the rules
of calculus work over C the same way that they do over R (not quite true,
but close enough for our purposes here), show that eıx is in V and show that
eıx = cosx+ ı sinx by adapting our argument that showed ex = sinhx+ coshx.
Draw a coordinate plane with perpendicular axes labeled “1” and “ı” as in 14
and give a geometric interpretation of the vector reıθ. (Hint : polar coordinates.)

18. In class, I mentioned that isomorphism is an equivalence relation. Prove this,
and use it to do #70 in Section 4.3.

2 Chapter 5 Challenge Problems

Book
Section 5.1: 31, 32, 39
Section 5.2: 40, 41, 44, 45 (Hint: Do Gram-Schmidt, but change the order.)
Section 5.3: 64
Section 5.4: 16, 35 (compare to what we did in Section 5.5), 42
Section 5.5: 31, 32, 33, 34

More problems

1. Recall Section 5.3, #64. The quaternions can also be viewed as a generalization
of C by adding vectors (so, in this case, matrices) j and k with the properties
that i2 = j2 = k2 = ijk = −1. Find matrices i, j, k in H which satisfy these
properties.

2. We saw Gram-Schmidt for Rn. Can you do it in an arbitrary inner product space
V ? Pick your favorite inner product space and find an orthonormal basis for it.

3. More generally, try redoing anything from chapter 5 in an inner-product space
V .

4. Suppose that A is an n × n matrix with rank(A) = n (so that we can find a
QR factorization). Does knowing the QR factorization of A help you compute

least-squares solutions to A~x = ~b. How?

5. Suppose that we have a set of data points and want to fit a polynomial of degree
m to them using least-squares. If we do the same thing with a polynomial of
degree n > m, explain (mathematically) why the error will be smaller. Even
though this holds mathematically, will this always be true in the real world?
Why not?
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6. Let 〈, 〉 be any inner product on Rn. Show that 〈~v, ~w〉 = ~wTM~v for some matrix
M . (The product ~wTM~v is called a sesquilinear form.) Show that M is sym-
metric and ~vTM~v > 0 for all nonzero vectors ~v. (A matrix with these properties
is called positive definite.)

7. Let V be a vector space with the (finite) basis B = {f1, . . . , fn}. Find an inner
product 〈f, g〉 for which B is an orthonormal basis. (Hint: Consider problem
#17 in Section 5.5 where T is an appropriately chosen isomorphism.) Note that
this problem shows that we can put an inner product on any finite dimensional
vector space.

8. Let V be a vector space with the (finite) basis B = {f1, . . . , fn}. Let A be an
n× n matrix whose diagonal entries are all positive. Let aij be the ijth entry of
this matrix. Find an inner product 〈f, g〉 for which 〈fi, fj〉 = aij for all i, j. (This
generalizes the previous problem: to get the previous problem, let A = In.)

9. Let 〈, 〉 be an inner product on Rn. Let A be an n × n matrix. Suppose
〈A~v,A~w〉 = 〈~v, ~w〉 for all ~v, ~w in Rn. Show that A is an orthogonal matrix.

10. Let 〈, 〉 be an inner product on V . Let A be a transformation from V to V .
Suppose 〈A(f), A(g)〉 = 〈f, g〉 for all f, g in V . Show that A is an orthogonal
transformation. (Note: We only defined orthogonal transformations on Rn, so
to begin you’ll have to figure out what the term “orthogonal transformation”
should mean in this case.)

11. Let V = span{sinx, cosx} and pick an inner product so that sin x, cosx is an
orthonormal basis. How does this relate to question 14 in Chapter 4 above?
What does it tell us about the transformation T? What if we picked an inner
product in which sinx and cos x are not orthonormal?

12. Adapt our work on Fourier Analysis to find
∞∑
n=1

1

n2k
for any positive integer

k. (Hint: Start with f(t) = tk.) If this is too difficult in general, try it for

a few small values of k. (This is the Riemann zeta function: ζ(k) =
∞∑
n=1

1

nk
.

You can check your work by entering “zeta(k)” for particular values of k at
www.wolframalpha.com. While we can of course approximate them numerically,
exact values of ζ(k) are unknown for the odd integers; if you find them, you’ll
be the mathematics-equivalent of famous.)

13. We’ve seen in this class that most of our work on Rn carries over to abstract
vector spaces V once we define some basic notions like “linear combination” and
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“inner product.” You know how to do calculus on Rn. Think about what notions
you’d need to carry over in order to do calculus on V . Can you carry them over?
(This question is partially answered in graduate-level Real Analysis, as well as
courses on Point-Set Topology, Representation Theory, Functional Analysis, and
Harmonic Analysis. Thus, you almost certainly won’t come up with a complete
answer to it. As a start, think about how you’d define limits like lim

f→f0
T (f) and

lim
n→∞

fn where f, f0, fn are vectors in V . Does lim
f→∞

T (f) make sense? If not, can

you modify it so that it does?)
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