The final exam is cumulative and will cover Section 1.1-7.4, with about 50% on Sections 1.1-5.4 and about 50% on the new material, Sections 6.1-7.4. This review sheet covers Sections 6.1-7.4; see the old review sheets for the earlier sections.

- 1. Find det(A) where $A = \begin{bmatrix} 1 & 0 & 0 & 2 & 1 \\ 0 & 4 & 0 & 3 & 6 \\ 0 & 9 & 7 & 0 & 3 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & -2 & -3 & 0 & 0 \end{bmatrix}$.
- 2. Find det(A) where $A = \begin{bmatrix} 0 & 1 & 1 & 2 \\ 0 & 3 & 2 & 4 \\ 1 & 3 & 5 & 7 \\ 0 & 0 & 2 & 0 \end{bmatrix}$.
- 3. Let $A = \begin{bmatrix} 1 & \boxed{2} & 3 & 4 \\ 5 & 6 & 7 & \boxed{8} \\ 9 & 10 & \boxed{11} & 12 \\ \boxed{13} & 14 & 15 & 16 \end{bmatrix}$ and let P be the pattern indicated (by the boxed entries). Find $\operatorname{sgn}(P)$ and $\operatorname{prod}(P)$.
- 4. Find $\det(A)$ where $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 2 & 1 & 3 & 9 \\ 0 & 0 & -1 & 3 & 6 \\ 0 & 0 & 0 & 2 & 11 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$.
- 5. Find det(A) where $A = \begin{bmatrix} 1 & 2 & 4 & 3 \\ 0 & 0 & 1 & 5 \\ 0 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix}$.
- 6. Let A be an $n \times n$ matrix. Find det(kA) in terms of det(A).
- 7. Let A be an orthogonal $n \times n$ matrix. What are the possible values of $\det(A)$?
- 8. Let A be an $n \times n$ matrix. Let \vec{v} be an eigenvector of A with eigenvalue λ . Is \vec{v} an eigenvector of $A^2 + 3A$? If so, what is its eigenvalue?
- 9. Find all 2×2 matrices for which $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is an eigenvector with eigenvalue 3.
- 10. Let A be a 2×2 matrix with tr(A) = 6 and det(A) = 5. Find the eigenvalues of A.
- 11. Let A be the matrix of an orthogonal projection onto a plane V in \mathbb{R}^3 . Arguing geometrically, find all real eigenvectors and eigenvalues of A and find an eigenbasis if possible. (If not possible, explain why not.)
- 12. Let A be the matrix of a vertical shear in \mathbb{R}^2 . Arguing geometrically, find all real eigenvectors and eigenvalues of A and find an eigenbasis if possible. (If not possible, explain why not.)

- 13. Let $A = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. It can be shown that A is the matrix of a 90° counterclockwise rotation about the z-axis in \mathbb{R}^3 as viewed from the positive z-axis. Arguing geometrically, find all real eigenvectors and eigenvalues of A and find an eigenbasis if possible. (If not possible, explain
- why not.)

 14. Let $A = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}$. It so happens that $A \begin{bmatrix} 1 \\ 1 \end{bmatrix} = 7 \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ and $A \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$.
 - Let a(t+1) = 3a(t) + 4b(t) and b(t+1) = 4a(t) + 3b(t) and suppose a(0) = 6 and b(0) = 2. Find closed formulas for a(t) and b(t).
- 15. Let $A = \begin{bmatrix} 2 & 6 \\ -1 & 3 \end{bmatrix}$. Find all real eigenvalues of A and their algebraic multiplicities.
- 16. Let $A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 0 & 2 & 1 & 3 & 9 \\ 0 & 0 & -1 & 3 & 6 \\ 0 & 0 & 0 & 2 & 11 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$. Find all real eigenvalues of A and their algebraic multiplicities.
- 17. Let A be a 2×2 matrix with eigenvalues 1 and 5. Find the characteristic polynomial of A.
- 18. Let A be a 3×3 matrix with eigenvalue 0 with algebraic multiplicity 3. Find the characteristic polynomial of A.
- 19. Let A be a 2×2 matrix with tr(A) = 5 and det(A) = 11. Find the characteristic polynomial of A.
- 20. Find the characteristic polynomial of the $n \times n$ matrix

$$A = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & a_0 \\ 1 & 0 & 0 & \dots & 0 & a_1 \\ 0 & 1 & 0 & \dots & 0 & a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & a_{n-2} \\ 0 & 0 & 0 & \dots & 1 & a_{n-1} \end{bmatrix}.$$

- (That is, A is the matrix whose jth column is \vec{e}_{j+1} for $j=1,\ldots,n-1$ and whose last column has the arbitrary entries a_0,\ldots,a_{n-1} .)
- 21. Using what you learned in the previous problem, find a 6×6 matrix A such that the characteristic polynomial of A is $f_A(\lambda) = \lambda^6 \lambda^5 + 3\lambda^2 7$.
- 22. Let $A = \begin{bmatrix} 1 & k \\ k & 2 \end{bmatrix}$. Find all scalars k so that 1 is an eigenvalue of A.
- 23. Let $A = \begin{bmatrix} 1 & k \\ k & 2 \end{bmatrix}$. Find all scalars k so that 2 is an eigenvalue of A.

- 24. Let $A = \begin{bmatrix} 2 & 6 \\ 0 & 3 \end{bmatrix}$. Find all real eigenvalues and eigenvectors of A and find an eigenbasis for A if possible. (If not, explain why not.)
- 25. Let $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Find all real eigenvalues and eigenvectors of A, and find an eigenbasis for A if possible. (If not, explain why not.)
- 26. Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Find all real eigenvalues and eigenvectors of A, and find an eigenbasis for A if possible. (If not, explain why not.)
- 27. Diagonalize the matrix $A = \begin{bmatrix} 1 & 0 & 4 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix}$ if possible (that is, find an invertible matrix S and a diagonal matrix D such that $D = S^{-1}AS$.) If it's not possible, explain why not.
- 28. Diagonalize the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ if possible (that is, find an invertible matrix S and a diagonal matrix D such that $D = S^{-1}AS$.) If it's not possible, explain why not.
- 29. For which constants k is the matrix $A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & k \end{bmatrix}$ diagonalizable?
- 30. Let $A = \begin{bmatrix} 1 & 4 \\ 0 & 2 \end{bmatrix}$. Find a formula for the entries of A^t where t is a positive integer. Also, find the vector $A^t \begin{bmatrix} 4 \\ 1 \end{bmatrix}$.
- 31. Let k be a fixed scalar and consider the linear transformation T(f(x)) = f(kx) from \mathcal{P}_2 to \mathcal{P}_2 . Find all eigenvalues and eigenfunctions of T. Is T diagonalizable?
- 32. Let $V = \operatorname{span}(\sinh x, \cosh x)$ and consider the linear transformation T(f) = f' from V to V. Find all eigenvalues and eigenfunctions of T. Is T diagonalizable?
- 33. Consider the linear transformation T(f(x)) = f(x-1) from \mathcal{P}_2 to \mathcal{P}_2 . Find all eigenvalues and eigenfunctions of T. Is T diagonalizable?
- 34. Let A and B be 2×2 matrices with $\det(A) = \det(B) = -1$ and $\operatorname{tr}(A) = \operatorname{tr}(B) = 0$. Is A necessarily similar to B? (Explain why it is or give a counter-example to show that it isn't.)
- 35. Let A and B be 2×2 matrices with $\det(A) = \det(B) = 1$ and $\operatorname{tr}(A) = \operatorname{tr}(B) = -2$. Is A necessarily similar to B? (Explain why it is or give a counter-example to show that it isn't.)
- 36. True or false:

- (a) Let A be a 3×3 matrix. Then there is a pattern in A with precisely 2 inversions.
- (b) Let A be a 3×3 matrix. Then there is a pattern in A with precisely 3 inversions.
- (c) Let A be a 3×3 matrix. Then there is a pattern in A with precisely 4 inversions.
- (d) Let A be a 4×4 matrix. Then all patterns of A have at most 5 inversions.
- (e) Let A be an $n \times n$ matrix. Then $det(A^T) = det(A)$.
- (f) Let A be an invertible $n \times n$ matrix. Then $\det(A^{-1}) = \det(A)$.
- (g) Let B be an $(n-1) \times (n-1)$ matrix and A be the $n \times n$ block matrix $\begin{bmatrix} 1 & 0 \\ 0 & B \end{bmatrix}$ (where the 0 entries represent zero matrices of the appropriate size). Then $\det(A) = \det(B)$.
- (h) Let A be an $n \times n$ matrix. If $rank(A) \neq n$, then 0 is an eigenvalue of A.
- (i) Let A be the 2×2 matrix of a rotation by angle θ where θ is not a multiple of π radians. Then A has no real eigenvalues.
- (j) If a matrix has no real eigenvalues, then it has no real eigenvectors.
- (k) Let A be an $n \times n$ matrix. Let $\vec{e_1}$ be an eigenvector of A with eigenvalue 1. Then the first column of A is $\vec{e_1}$.
- (1) Let E_2 be an eigenspace of the matrix A. Let \vec{v} be a nonzero vector in E_2 . Then $A\vec{v}=2\vec{v}$.
- (m) Let λ be an eigenvalue of the matrix A. Then $\dim(E_{\lambda}) \geq 1$.
- (n) Let A be a 4×4 matrix and let λ be an eigenvalue of A with algebraic multiplicity 3. Then the geometric multiplicity of λ cannot be 2.
- (o) Let A be a 4×4 matrix and let λ be an eigenvalue of A with algebraic multiplicity 3. Then the geometric multiplicity of λ cannot be 4.
- (p) If an $n \times n$ matrix has n distinct real eigenvalues, then it has an eigenbasis.
- (q) Let A be an $n \times n$ matrix. If tr(A) = det(A), then A is invertible.
- (r) Let A be an $n \times n$ matrix. Then the eigenvalues of A are the diagonal entries of A.
- (s) Let A be a lower triangular matrix with all entries on the diagonal distinct. Then there is an eigenbasis for A.
- (t) Let A be an $n \times n$ matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$ (repeated according to algebraic multiplicity). Then $\det(A) = \lambda_1 + \cdots + \lambda_n$.
- (u) Let A be an $n \times n$ matrix with n distinct eigenvalues. If the largest of the absolute values of the eigenvalues is 0.95, then $\lim_{t\to\infty}A^t\vec{v}=\vec{0}$ for every vector \vec{v} in \mathbb{R}^n .
- (v) If A is similar to B, then tr(A) = tr(B) and det(A) = det(B).
- (w) If tr(A) = tr(B) and det(A) = det(B), then A is similar to B.