Answers are provided for all even numbered problems and for some odd numbered problems. If you have a question about a problem that isn't included below, feel free to ask me. If you think you've spotted an error, please let me know.

Section 5.3

- 2. Is orthogonal.
- 4. Is not orthogonal. The first column is not orthogonal to the third column, and the second column is not orthogonal to the third column.
- 28. There are a few ways to do this. The simplest is to use #27: $L(\vec{v}) \cdot L(\vec{w}) = (A\vec{v}) \cdot (A\vec{w}) = \vec{v} \cdot (A^T A \vec{w}) = \vec{v} \cdot \vec{w}$ since $A^T A = I_n$ for symmetric matrices.

Alternatively, you can rewrite the equation $\|\vec{v} + \vec{w}\|^2 = \|\vec{v}\|^2 + 2(\vec{v} \cdot \vec{w}) + \|\vec{w}\|^2$ as $\vec{v} \cdot \vec{w} = \frac{1}{2}(\|\vec{v} + \vec{w}\|^2 - \|\vec{v}\|^2 - \|\vec{w}\|^2)$, so that $L(\vec{v}) \cdot L(\vec{w}) = \frac{1}{2}(\|L(\vec{v}) + L(\vec{w})\|^2 - \|L(\vec{v})\|^2 - \|L(\vec{w})\|^2) = \frac{1}{2}(\|\vec{v} + \vec{w}\|^2 - \|\vec{v}\|^2 - \|\vec{w}\|^2) = \vec{v} \cdot \vec{w}$ since L is a linear transformation and preserves the length of vectors.

Or, a third method is to write everything in terms of an orthonormal basis and then compute both sides directly. That is, let $\vec{u_1}, \ldots, \vec{u_n}$ form an orthonormal basis for \mathbb{R}^n (for example, take $\vec{u_i} = \vec{e_i}$ for $i = 1, \ldots, n$) and note that $L(\vec{u_1}), \ldots, L(\vec{u_n})$ will also be an orthonormal basis of \mathbb{R}^n since L is orthogonal (see Theorem 5.3.2, or Theorem 5.3.3 for the special case $\vec{u_i} = \vec{e_i}$). Write $\vec{v} = c_1 \vec{u_1} + \cdots + c_n \vec{u_n}$ and $\vec{w} = d_1 \vec{u_1} + \cdots + d_n \vec{u_n}$. Then, compute $\vec{v} \cdot \vec{w} = c_1 d_1 + \cdots + c_n d_n$ and $L(\vec{v}) \cdot L(\vec{w}) = (c_1 L(\vec{u_1}) + \cdots + c_n L(\vec{u_n})) \cdot (d_1 L(\vec{u_1}) + \cdots + d_n L(\vec{u_n})) = c_1 d_1 + \cdots + c_n d_n$, so that $\vec{v} \cdot \vec{w} = L(\vec{v}) \cdot L(\vec{w})$.

- 30. L preserves length, so the only solution to $L(\vec{x}) = \vec{0}$ is $\vec{x} = \vec{0}$. Thus, $\ker(L) = \{\vec{0}\}$. By Rank-Nullity, $\dim(\operatorname{im}(L)) = m$. We saw back in chapter 1 that $\operatorname{rank}(L) \leq n$, so $m \leq n$ as $\operatorname{rank}(L) = m$. Following the proofs of Theorems 5.3.2 and 5.3.3 (but dropping the assumption that m = n), we see that the columns of A will be orthonormal. Computing A^TA as in Theorem 5.3.7 (again, dropping the assumption m = n), we see that $A^TA = I_m$. From Theorem 5.3.10, we see that AA^T is the matrix of the orthogonal projection onto the space V spanned by the columns of A, and that the jth column of A is $\operatorname{proj}_V(\vec{e_j})$.
- 32. (a) Not necessarily. Counterexamples are easy to find. For example, $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ will work.
 - (b) This is necessarily true, as Summary 5.3.8 tells us that $A^T = A^{-1}$ in this case.
- 36. Either find a basis of \mathbb{R}^3 containing the first two columns of the matrix as basis vectors and use Gram-Schmidt, or note that $A^TA = I_3$ and using the resulting equations to solve

for a,b, and c. Either way, you should come up with either $\begin{bmatrix} 2/3 & 1/\sqrt{2} & 1/\sqrt{18} \\ 2/3 & -1/\sqrt{2} & 1/\sqrt{18} \\ 1/3 & 0 & -4/\sqrt{18} \end{bmatrix}$ or

$$\begin{bmatrix} 2/3 & 1/\sqrt{2} & -1/\sqrt{18} \\ 2/3 & -1/\sqrt{2} & -1/\sqrt{18} \\ 1/3 & 0 & 4/\sqrt{18} \end{bmatrix}.$$

42. Geometrically, an orthogonal projection does nothing on the space it projects onto, so that the second projection will do nothing new and $A^2 = A$. Algebraically, write $A = QQ^T$ where Q is orthogonal, so that $A^2 = QQ^TQQ^T = QQ^T = A$ since $Q^TQ = I_n$.

Section 5.4

3. By Theorem 5.1.8(c), we know that p+q=n, so it is enough to either show that these vectors are linearly independent or that they span \mathbb{R}^n . I've provided arguments for both techniques. If you noted that p+q=n, you only need one of them. Otherwise, you need both halves.

Linear Independence:

Write $c_1\vec{v_1} + \cdots + c_p\vec{v_p} + d_1\vec{w_1} + \cdots + w_q\vec{w_q} = \vec{0}$. We want to show that $c_1 = \cdots = c_p = d_1 = \cdots = d_q = 0$.

One strategy is to rewrite this relation as $c_1\vec{v_1}+\dots+c_p\vec{v_p}=-d_1\vec{w_1}-\dots-w_q\vec{w_q}$. The left-hand side is in V and the right-hand side is in V^\perp , so both sides are in $V\cap V^\perp$. But by Theorem 5.1.8(b), we know that $V\cap V^\perp=\{\vec{0}\}$, so that $c_1\vec{v_1}+\dots+c_p\vec{v_p}=-d_1\vec{w_1}-\dots-w_q\vec{w_q}=0$. Then, the linear independence of $\vec{v_1},\dots,\vec{v_p}$ tells us that $c_1=\dots=c_p=0$ and the linear independence of $\vec{w_1},\dots,\vec{w_q}$ tells us that $d_1=\dots=d_q=0$. Thus, $\vec{v_1},\dots,\vec{v_p},\vec{w_1},\dots,\vec{w_q}$ are linearly independent.

Another strategy is to take proj_V of both sides of this relation to show that $c_1\vec{v_1} + \cdots + c_p\vec{v_p} = \vec{0}$ and subtract this from the original relation to see that $d_1\vec{w_1} + \cdots + w_q\vec{w_q} = \vec{0}$ as well, and then proceed as above. This is a special case of the solution to #5 on the 2nd midterm exam.

Spanning:

Let $\vec{x} \in \mathbb{R}^n$ be an arbitrary vector. We will show that \vec{x} is in the span of $\vec{v_1}, \ldots, \vec{v_p}, \vec{w_1}, \ldots, \vec{w_q}$. We know that we can uniquely write $\vec{x} = \vec{x}^{\parallel} + \vec{x}^{\perp}$ where $\vec{x}^{\parallel} \in V$ and $\vec{x}^{\perp} \in V^{\perp}$. As $\vec{x}^{\parallel} \in V$, we know that $\vec{x}^{\parallel} = c_1 \vec{v_1} + \cdots + c_p \vec{v_p}$ for some choice of scalars c_1, \ldots, c_p , since $\vec{v_1}, \ldots, \vec{v_p}$ form a basis of V. Similarly, the fact that $\vec{w_1}, \ldots, \vec{w_q}$ form a basis of V^{\perp} tells us that we can write $\vec{x}^{\perp} = d_1 \vec{w_1} + \cdots + w_q \vec{w_q}$ for some scalars d_1, \ldots, d_q . Then, $\vec{x} = c_1 \vec{v_1} + \cdots + c_p \vec{v_p} + d_1 \vec{w_1} + \cdots + w_q \vec{w_q}$ so that \vec{x} is indeed in span $(\vec{v_1}, \ldots, \vec{v_p}, \vec{w_1}, \ldots, \vec{w_q})$, and, as \vec{x} was an arbitrary vector in \mathbb{R}^n , we see that span $(\vec{v_1}, \ldots, \vec{v_p}, \vec{w_1}, \ldots, \vec{w_q}) = \mathbb{R}^n$.

4. Start with $(\operatorname{im}(A))^{\perp} = \ker(A^T)$. Taking perps of both sides gives $\operatorname{im}(A) = (\ker(A^T))^{\perp}$. Now, this relation holds for any matrix A, so in particular we can replace the A on both sides by A^T . Then, since $(A^T)^T = A$, we have that $(\ker(A))^{\perp} = \operatorname{im}(A^T)$.