Answers are provided for all even numbered problems and for some odd numbered problems. If you have a question about a problem that isn't included below, feel free to ask me. If you think you've spotted an error, please let me know.

Section 3.2

- 2. W is not a subspace of \mathbb{R}^3 as it is not closed under scalar multiplication. For example, let k=-1 and $\vec{v}=\begin{bmatrix}1\\2\\3\end{bmatrix}$. Then $\vec{v}\in W$ but $k\vec{v}\not\in W$.
- 3. $W = \operatorname{im}(\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix})$, so W is a subspace of \mathbb{R}^3 .
- 6. (a) Note $\vec{0} \in V$ and $\vec{0} \in W$, so $\vec{0} \in V \cap W$.

Suppose that $\vec{v}, \vec{w} \in V \cap W$. Then $\vec{v}, \vec{w} \in V$ and $\vec{v}, \vec{w} \in W$, so $\vec{v} + \vec{w} \in V$ and $\vec{v} + \vec{w} \in W$ since V and W are subspaces of \mathbb{R}^n (and so closed under addition). Thus, $\vec{v} + \vec{w} \in V \cap W$. Suppose that $\vec{v} \in V \cap W$ and $k \in \mathbb{R}$. Then $\vec{v} \in V$ and $\vec{v} \in W$, so $k\vec{v} \in V$ and $k\vec{v} \in W$, so $k\vec{v} \in V \cap W$.

Thus, $V \cap W$ is a subspace of \mathbb{R}^n .

- (b) $V \cup W$ is not necessarily a subspace of \mathbb{R}^n since it's not always closed under addition. For example, let $V = \ker(\begin{bmatrix} 1 & -1 \end{bmatrix})$ and $W = \ker(\begin{bmatrix} 1 & 1 \end{bmatrix}$ (that is, V is the line y = x and W is the line y = -x). Then $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \in V$ and $\begin{bmatrix} 1 \\ -1 \end{bmatrix} \in W$, but $\begin{bmatrix} 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} \not\in V \cup W$.
- 8. One possible answer: $\begin{bmatrix} 1 \\ 2 \end{bmatrix} 2 \begin{bmatrix} 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 3 \\ 4 \end{bmatrix} = \vec{0}$.
- 24. The third column is redundant: $\begin{bmatrix} 6 \\ 5 \\ 4 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix}$, so $3 \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} \begin{bmatrix} 6 \\ 5 \\ 4 \end{bmatrix} = \vec{0}$, so that

$$\begin{bmatrix} 3\\1\\-1 \end{bmatrix} \in \ker A.$$

- 36. (also in the review solutions for Exam 2) Let $c_1\vec{v_1} + \cdots + c_m\vec{v_m} = \vec{0}$ be a nontrivial relation among $\vec{v_1}, \ldots, \vec{v_m}$. Applying T to both sides and using the properties of linear transformations, we see that $c_1T(\vec{v_1}) + \cdots + c_mT(\vec{v_m}) = \vec{0}$, so that $T(\vec{v_1}), \ldots, T(\vec{v_m})$ are linear dependent.
- 37. (also in the review solutions for Exam 2) Not necessarily. For example, let $T(\vec{x}) = \vec{0}$ for all \vec{x} .

1

Section 3.3

Section 3.3

24. Note that
$$\operatorname{rref}(A) = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$
, so a basis for $\operatorname{im}(A)$ is $\{\begin{bmatrix} 4 \\ 3 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 3 \end{bmatrix}, \begin{bmatrix} 6 \\ 5 \\ 10 \\ 0 \end{bmatrix}\}$ and a basis for $\ker(A)$ is $\{\begin{bmatrix} 2 \\ -1 \\ 0 \\ 0 \end{bmatrix}\}$.

- 26. (a) L
 - (b) H and X
 - (c) L

Note that there is more than one way to express a space as a span of a set of vectors. For example, $\operatorname{im}(C) = \operatorname{span}(\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\1 \end{bmatrix}) = \operatorname{span}(\begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}) \text{ since } \begin{bmatrix} 1\\0\\1 \end{bmatrix} = \begin{bmatrix} 1\\1\\1 \end{bmatrix} - \begin{bmatrix} 0\\1\\0 \end{bmatrix}.$

- 28. They form a basis for all k such that $k \neq 29$. To see this, either form the 4×4 matrix that has these vectors as columns and try to reduce it to I_4 , or look at possible relations between the columns and see for which k these are possible. (In this case, the second method is simpler since the copious zeroes mean that there's at most one way to possibly write the fourth vector as a linear combination of the first three.)
- 33. Note that $V = \ker([c_1 \ldots c_n])$. Since at least one of the c_i is nonzero, the rank of this matrix will be 1, so by Rank-Nullity the kernel will be n-1 dimensional. A hyperplane in \mathbb{R}^3 is a plane. A hyperplane in \mathbb{R}^2 is a line.
- 35. The dimension is n-1 since the set of solutions to $\vec{x} \cdot \vec{v} = 0$ is a hyperplane.
- 36. (also in the review solutions for Exam 2) This can't be done. If rank(A) = rank(A), then by Rank-Nullity we'd have rank(A) = 1.5, which can't happen since the rank of a matrix must be an integer.
- 39. Any of the characterizations in Summary 3.3.10 can be used (although some are simpler than others). Conditions (ii) or (vi) are probably the easiest to use in this case. As C is 4×5 , we know that $\operatorname{nullity}(C) \geq 1$ (by Rank-Nullity, since $\operatorname{rank}(C) \leq 4$). So, since $\ker(C) \subseteq \ker(A)$, it must be that $\ker(A) \neq \{0\}$.
- 66. Note that $\operatorname{rref}\left(\begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 2 & 4 & 0 & 1 & 0 & 0 \\ 3 & 6 & 0 & 0 & 1 & 0 \\ 4 & 8 & 0 & 0 & 0 & 1 \end{bmatrix}\right) = \begin{bmatrix} 1 & 0 & 2 & 0 & 0 & -1/4 \\ 0 & 1 & -1 & 0 & 0 & 1/4 \\ 0 & 0 & 0 & 1 & 0 & -1/2 \\ 0 & 0 & 0 & 0 & 1 & -3/4 \end{bmatrix}$, so that the first, second,

fourth, and fifth columns are linearly independent (as they have leading 1's). Thus, $\mathfrak{B} =$

$$\left\{\begin{bmatrix}1\\2\\3\\4\end{bmatrix},\begin{bmatrix}1\\4\\6\\8\end{bmatrix},\vec{e_2},\vec{e_3}\right\} \text{ is a basis of } \mathbb{R}^4 \text{ by } \#65.$$