1. (20 pts) Let $V = \text{span}(e^x, e^{-x}, xe^x, xe^{-x})$ be a subspace of C^{∞} with basis

$$\mathfrak{B} = \{e^x, e^{-x}, xe^x, xe^{-x}\}.$$

Let T(f(x)) = 2f(x) - f'(x) be a linear transformation from V to V. Find the \mathfrak{B} -matrix of T. Is T an isomorphism?

We will compute B column-by-column:

$$[T(e^{x})]_{\mathfrak{B}} = [2e^{x} - e^{x}]_{\mathfrak{B}} = [e^{x}]_{\mathfrak{B}} = \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}$$

$$[T(e^{-x})]_{\mathfrak{B}} = [2e^{-x} - (-e^{-x})]_{\mathfrak{B}} = [3e^{-x}]_{\mathfrak{B}} = \begin{bmatrix} 0\\3\\0\\0\\0 \end{bmatrix}$$

$$[T(xe^{x})]_{\mathfrak{B}} = [2xe^{x} - (xe^{x} + e^{x})]_{\mathfrak{B}} = [xe^{x} - e^{x}]_{\mathfrak{B}} = \begin{bmatrix} -1\\0\\1\\0 \end{bmatrix}$$

$$[T(xe^{-x})]_{\mathfrak{B}} = [2xe^{-x} - (-xe^{-x} + e^{-x})]_{\mathfrak{B}} = [3xe^{-x} - e^{-x}]_{\mathfrak{B}} = \begin{bmatrix} 0\\-1\\0\\3 \end{bmatrix}$$

so that

$$B = \begin{bmatrix} 1 & 0 & -1 & 0 \\ 0 & 3 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 3 \end{bmatrix}.$$

The matrix B is invertible (as it is upper-triangular with nonzero diagonal entries, or by using the zero-trick to see that the columns are linearly independent), so T is an isomorphism.

2. Let $T(A) = A - A^{T}$ be a linear transformation from $\mathbb{R}^{2 \times 2}$ to $\mathbb{R}^{2 \times 2}$.

(a) (10 pts) Find a basis of
$$im(T)$$
 and compute $rank(T)$.

Note
$$T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} 0 & b-c \\ c-b & 0 \end{bmatrix} = (b-c) \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
. Thus, $\operatorname{im}(T)$ is spanned by $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$ and a basis of $\operatorname{im}(T)$ is $\{\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}\}$. So, $\operatorname{rank}(T) = 1$.

(b) (10 pts) Find a basis of ker(T) and compute nullity(T).

If we set $T(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} 0 & b-c \\ c-b & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. That is, the matrices in $\ker(T)$ are precisely those with b=c, i.e, matrices of the form $\begin{bmatrix} a & b \\ b & d \end{bmatrix} = a\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + d\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, so that $\ker(T) = \operatorname{span}(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix})$ and since these vectors are linearly independent (zero trick), we see that $\{\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}\}$ form a basis of $\ker(T)$. So, nullity $\operatorname{T}(T) = 3$. Note that $\operatorname{rank}(T) + \operatorname{nullity}(T) = 4 = \dim(\mathbb{R}^{2\times 2})$ as required by Rank-Nullity.

3. (16 pts) Let $\mathfrak{B} = \{\vec{u_1}, \vec{u_2}, \vec{u_3}, \vec{u_4}\}$ be an orthonormal basis of \mathbb{R}^4 . Let $V = \operatorname{span}(\vec{u_1}, \vec{u_2})$. Note that V is a subspace of \mathbb{R}^4 . Find the \mathfrak{B} -matrix of the linear transformation $T(\vec{x}) = \operatorname{proj}_V \vec{x}$.

Note that $\vec{u_1}$, $\vec{u_2}$ are linearly independent (as they are orthonormal) and hence they form an orthonormal basis of V. This shows us that $\text{proj}_V(\vec{x}) = (\vec{u_1} \cdot \vec{x})\vec{u_1} + (\vec{u_2} \cdot \vec{x})\vec{u_2}$. We compute the matrix Bcolumn-by-column (by noting that $\vec{u_i} \cdot \vec{u_j} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$):

$$[T(\vec{u_1})]_{\mathfrak{B}} = [\vec{u_1}]_{\mathfrak{B}} = \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$
$$[T(\vec{u_2})]_{\mathfrak{B}} = [\vec{u_2}]_{\mathfrak{B}} = \begin{bmatrix} 0\\1\\0 \end{bmatrix}$$

$$[T(\vec{u_2})]_{\mathfrak{B}} = [\vec{u_2}]_{\mathfrak{B}} = \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$$

$$[T(\vec{u_3})]_{\mathfrak{B}} = [\vec{0}]_{\mathfrak{B}} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$

$$[T(\vec{u_4})]_{\mathfrak{B}} = [\vec{0}]_{\mathfrak{B}} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$$

4. (20 pts) Use the Gram-Schmidt process to find an orthonormal basis for the subspace V of \mathbb{R}^4 spanned by the vectors

$$\vec{v_1} = \begin{bmatrix} 0\\4\\0\\0\\0 \end{bmatrix}, \ \vec{v_2} = \begin{bmatrix} 1\\3\\0\\1 \end{bmatrix}, \ \vec{v_3} = \begin{bmatrix} 4\\5\\8\\4 \end{bmatrix},$$

and in the process find the QR-factorization of the matrix

$$M = \begin{bmatrix} 0 & 1 & 4 \\ 4 & 3 & 5 \\ 0 & 0 & 8 \\ 0 & 1 & 4 \end{bmatrix}.$$

Please check your work!!!!!!!!!

$$\vec{u_1} = \frac{1}{4}\vec{v_1} = \begin{bmatrix} 0\\1\\0\\0\\1 \end{bmatrix}$$

$$\vec{v_2}^{\perp} = \vec{v_2} - 3\vec{u_1} = \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$

$$\vec{u_2} = \frac{1}{\sqrt{2}}\vec{v_2}^{\perp} = \frac{1}{\sqrt{2}}\begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}$$

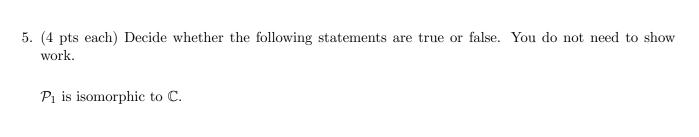
$$\vec{v_3}^{\perp} = \vec{v_3} - 5\vec{u_1} - \frac{8}{\sqrt{2}}\vec{u_2} = \begin{bmatrix} 0\\0\\8\\0 \end{bmatrix}$$

$$\vec{u_3} = \frac{1}{8}\vec{v_3}^{\perp} = \begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}.$$

Then $\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$ form an orthonormal basis for V and the QR-factorization is:

$$Q = \begin{bmatrix} 0 & \frac{1}{\sqrt{2}} & 0\\ 1 & 0 & 0\\ 0 & 0 & 1\\ 0 & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}, R = Q^T M = \begin{bmatrix} 4 & 3 & 5\\ 0 & \sqrt{2} & 4\sqrt{2}\\ 0 & 0 & 8 \end{bmatrix}.$$

Fun Fact: Note that $x_1 = x_4$ in each of the vectors in our basis of V. Since we know the hyperplane $x_1 = x_4$ has dimension 3, it follows that in fact V is this hyperplane.



False
Both spaces have dimension 2, so we can find an isomorphism. For example, T(a + bx) = a + ib is an isomorphism from \mathcal{P}_1 to \mathbb{C} .

Let $V = \{ f \in C^{\infty} \mid f'(x) \ge 0 \text{ for all } x \in \mathbb{R} \}$. Then V is a subspace of C^{∞} .

V is not closed under scalar multiplication (by a negative scalar). For example, $x^3 \in V$, but $-x^3 \notin V$.

Let
$$a_1, ..., a_n, b_1, ..., b_n \in \mathbb{R}$$
. Then $\left(\sum_{k=1}^n a_k b_k\right)^2 \le \sum_{k=1}^n (a_k^2) \sum_{k=1}^n (b_k^2)$.

True

Use Cauchy-Schwarz on
$$\vec{a} = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix}$ and square both sides.

Let i and j be integers with $1 \le i \le n$ and $1 \le j \le n$. Let $V = \{A \in \mathbb{R}^{n \times n} | \vec{e_i}^T A \vec{e_j} = 0\}$. (Note V is a subspace of $\mathbb{R}^{n \times n}$.) Then $\dim(V) = n^2 - n$.

 $\vec{e_i}^T A \vec{e_j} = a_{ij}$, so this condition means that all of the entries of A are free, except that the ijth entry must be zero. So, a basis of V consists of all matrices with precisely one nonzero entry (where the nonzero entry is a 1), except for the matrix with the nonzero entry in the ijth position. Thus, $\dim(V) = n^2 - 1$.

Let A be an $n \times m$ matrix. Then $A^T A$ is a symmetric $m \times m$ matrix.

This can be seen directly: $(A^TA)^T = A^T(A^T)^T = A^TA$. Alternatively, note that the ijth entry of A^TA is the dot product of the ith and jth columns of A and is thus equal to the jith entry since the dot product is commutative.

Let $\vec{x} \in \mathbb{R}^n$ and let V be a subspace of \mathbb{R}^n . Then $\|\operatorname{proj}_V \vec{x}\| \leq \|\vec{x}\|$.

See Theorem 5.1.10.