Assignment \#13 Solutions

Page 412, 48.1 Let G be the graph in the figure.
(a) How many different walks are there from a to b?
(b) How many different paths are there from a to b?
(a) There are infinitely many walks from a to b, since a walk could retrace the same set of vertices arbitrarily many times.
(b) There are $5 \times 3=15$ paths from a to b.

Page 412, 48.4 Let $n \geq 2$ be an integer. Form a graph G_{n} whose vertices are all the two-element subsets of $\{1,2, \ldots, n\}$. In this graph, we have an edge between distinct vertices $\{a, b\}$ and $\{c, d\}$ exactly when $\{a, b\} \cap\{c, d\}=\emptyset$. Please answer:
(a) How many vertices does G_{n} have?
(b) How many edges does G_{n} have?
(c) For which values of $n \geq 2$ is G_{n} connected? Prove your answer.
(a) There are $\binom{n}{2}$ vertices.
(b) Each vertex is adjacent to $\binom{n-2}{2}$ other vertices, so there are $|E|=\frac{1}{2} \sum_{v \in G_{n}(v)} d(v)=\frac{1}{2}\binom{n}{2}\binom{n-2}{2}$ edges.
(c) G_{2} has only one vertex and so is clearly connected. In G_{3} and G_{4}, there is no path from $\{1,2\}$ to $\{1,3\}$ (for example), so that G_{3} and G_{4} are not connected. We will now show that G_{n} is connected for $n \geq 5$, so that G_{n} is connected for all $n \geq 2$ except $n=3,4$.
Let $n \geq 5$ and $\{a, b\},\{c, d\} \in V\left(G_{n}\right)$. We will show that G_{n} is connected by finding a path from $\{a, b\}$ to $\{c, d\}$. We proceed by cases:
Case 1: $\{a, b\}=\{c, d\}$. Then $\{a, b\}$ is a $(\{a, b\},\{a, b\})$-path.
Case 2: $\{a, b\} \cap\{c, d\}=\emptyset$. Then $\{a, b\} \sim\{c, d\}$ is a $(\{a, b\},\{c, d\})$-path.
Case 3: $\{a, b\} \cap\{c, d\} \neq \emptyset$, but $\{a, b\} \neq\{c, d\}$. In this case, it must be that $|\{a, b\} \cap\{c, d\}|=1$, and that $\{a, b, c, d\}$ actually only contains three distinct elements (since one of $a=c, a=d$, $b=c$, or $b=d$ holds). Since $n \geq 5$ and $|\{a, b, c, d\}|=3$, there must be $e, f \in\{1, \ldots, n\}$ such that neither e nor f are in $\{a, b, c, d\}$. Then $\{a, b\} \sim\{e, f\} \sim\{c, d\}$ is a $(\{a, b\},\{c, d\})$-path.

In all cases, we have found a $(\{a, b\},\{c, d\})$-path. Since $\{a, b\}$ and $\{c, d\}$ were arbitrarily chosen vertices, G_{n} is connected for $n \geq 5$.

Page 412, 48.8 Consider the is-connected-to relation on the vertices of a graph. Show that is-connected-to need not be irrefelexive or antisymmetric.

Consider the graph $G=(V, E)$ where $V=\{a, b\}$ and $E=\{\{a, b\}\}$. Then a is connected to b and b is connected to a. Since is-connected-to is transitive, a is connected to a, so is-connected-to is not irreflexive. Also, $a \neq b$, so is-connected-to is not antisymmetric.

Page 412, 48.9 Let G be a graph. Prove that G or \bar{G} (or both) must be connected.
If G is connected, there is nothing to show. Suppose that G is not connected. We will show that \bar{G} is connected.

Let $a, b \in V(\bar{G})$. We will show that there is an (a, b)-path in \bar{G}. Since G is not connected, there exist vertices $x, y \in V(G)$ such that there is no (x, y)-path in G. We proceed by cases:
Case 1: Both a and b are in the same component as x in G. Then neither a nor b is connected to y in G. In particular, neither a nor b is adjacent to y in G and so both a and b are adjacent to y in \bar{G}. Thus, $a \sim y \sim b$ is an (a, b)-path in \bar{G}.
Case 2: Neither a nor b is in the same component as x in G. Then neither a nor b is connected to x in G. In particular, neither a nor b is adjacent to x in G and so both a and b are adjacent to x in \bar{G}. Thus, $a \sim x \sim b$ is an (a, b)-path in \bar{G}.
Case 3: One of a or b is in the same component as x in G, but the other is not. Without loss of generality, suppose that a is in the same component as x in G. Then a is not in the same component as y in G, so a is not adjacent to y in G and so $a \sim y$ in \bar{G}. Also, x is not in the same component of y in G and so is not adjacent to y in G, and so $y \sim x$ in \bar{G}. Finally, b is not in the same component as x in G, so is not adjacent to x in G and so $x \sim b$ in \bar{G}. Thus, $a \sim y \sim x \sim b$ is a (a, b)-path in \bar{G}.

In all cases, we have found a (a, b)-path in \bar{G}. Since a and b were arbitrarily chosen vertices, \bar{G} is connected.

Page 420, 49.2 Let T be a tree. Prove that the average degree of a vertex is less than 2.
Suppose that T has n vertices. By Theorem 49.12, T has $n-1$ edges. Then $\sum_{v \in V(T)} d(v)=$ $2|E(V)|=2(n-1)$, so that the average degree of a vertex is $\frac{1}{n} \sum_{v \in V(T)} d(v)=\frac{2(n-1)}{n}<2$.

Page 420, 49.5 Complete the proof of Theorem 49.4. That is, prove that if G is a graph in which any two vertices are joined by a unique path, then G must be a tree.

Since any two vertices of G are connected, G is connected. Thus, we need only show that G is acyclic.

Assume for contradiction that G has a cycle. Call it $C=v_{0} \sim v_{1} \sim \cdots \sim v_{\ell}$ where $v_{0}=v_{\ell}$. Then $v_{1} \sim \cdots \sim v_{\ell}$ is a $\left(v_{1}, v_{0}\right)$-path and $v_{1} \sim v_{0}$ is a $\left(v_{1}, v_{0}\right)$-path. Since $\ell \geq 3$ (as all cycles contain at least three vertices), the first of these paths has length at least 2 , while the second of these paths has length 1 . Thus, they must be distinct $\left(v_{1}, v_{0}\right)$-paths, contradicting the fact that G has a unique $\left(v_{1}, v_{0}\right)$-path. So, it must be that G has no cycle and so is a tree.

Page 420, 49.7 Prove the following converse to Proposition 49.8: Let T be a tree with at least two vertices and let $v \in V(T)$. If $T-v$ is a tree, then v is a leaf.

Let T be a tree with at least two vertices and let $v \in V(T)$. We will proceed by contraposition. Suppose that v is not a leaf-that is, that $d_{T}(v) \geq 2$ (since clearly $d_{T}(v) \neq 0$ as T is connected and has at least two vertices); we will show that $T-v$ is not a tree. Since $d_{T}(v) \geq 2, v$ has at least two neighbors: call them x and y. Note that $x \sim v \sim y$ is an (x, y)-path in T, and that this path must be the unique (x, y)-path in T since T is a tree. Thus, $T-v$ does not have an (x, y)-path since any (x, y)-path of $T-v$ would also be an (x, y)-path of T distinct from the (x, y)-path $x \sim v \sim y$ (as v is not a vertex of $T-v$). Since there is no (x, y)-path in $T-v$, it must be that $T-v$ is not connected and so is not a tree.

Page 420, 49.9 Let G be a forest with n vertices and c components. Find and prove a formula for the number of edges in G.

Let $n_{1}, n_{2}, \ldots, n_{c}$ be the number of vertices in the c components of G (that is, n_{1} is the number of vertices in the first component, n_{2} is the number of vertices in the second component, and so on). Then $n_{1}+n_{2}+\cdots+n_{c}=n$. Note that each component of G is a tree and so the j th component of $G(1 \leq j \leq c)$ has $n_{j}-1$ edges by Theorem 49.12. So, in total, G has $\left(n_{1}-1\right)+\left(n_{2}-1\right)+\cdots+\left(n_{c}-1\right)=\left(n_{1}+n_{2}+\cdots+n_{c}\right)-c=n-c$ edges.

