

1. (30) Let $U = \{e^{i\theta} : \theta \in \mathbb{R}\}$ be the group of complex numbers on the unit circle under complex multiplication, and let $f : U \rightarrow U$ be the map given by $f(z) = z^2$. (You may assume without proof that U is a group.)

(i) Prove that f is a homomorphism of groups. (You may use standard properties of complex numbers without proof.)

(ii) Find the kernel of f . (Don't just write down the definition. You need to describe an explicit subset of U .)

(iii) Show that $i = e^{i\pi/2}$ lies in the image (or “range”) of f , and describe the image of f as an explicit subset of U .

(iv) Let G and H be groups and let $\phi : G \rightarrow H$ be a homomorphism of groups. State the Fundamental Homomorphism Theorem (First Isomorphism Theorem) as it applies to this situation.

(v) Use the earlier parts of the question to find an example of a group G and a normal subgroup $N \trianglelefteq G$ such that $N \neq \{e\}$ and G/N is isomorphic to G .

(vi) Give an example of a finite group G and a normal subgroup N of G such that $N \neq \{e\}$ and G/N is isomorphic to G , or explain why no such example exists.

2. (20) Find all abelian groups of order 400, up to isomorphism. (Points will be deducted for repeated entries!)

3. (30) The symmetric group S_4 has precisely four normal subgroups: S_4 itself, the alternating group A_4 , the trivial subgroup $\{e\}$, and a subgroup

$$V_4 = \{e, (12)(34), (13)(24), (14)(23)\}$$

of order 4.

(i) Let $x = (12)$ and $y = (23)$. Prove that the commutator $[x, y] = xyx^{-1}y^{-1}$ has order 3.

(ii) Using your answer to (i), prove that the commutator subgroup of S_4 cannot be V_4 or $\{e\}$.

(iii) Prove that the commutator subgroup of S_4 is A_4 .

(iv) Deduce from (iii) that the quotient group S_4/V_4 is nonabelian. To which familiar group is S_4/V_4 isomorphic?

(v) Explain why the center $Z(G)$ of a group G is always abelian.

(vi) Deduce from (v) that $Z(S_4)$ must be either V_4 or $\{e\}$.

(vii) Prove that V_4 is not the center of S_4 , and deduce that $Z(S_4) = \{e\}$.

4. (20) True or False. Mark with a “T” or an “F,” and provide a brief explanation (a couple of lines), for each part.

(i) _____ The alternating group A_5 has subgroups other than the trivial subgroup $\{e\}$ and A_5 itself.

(ii) _____ The alternating group A_5 has a subgroup of order 30.

(iii) _____ The group of integers \mathbb{Z} has a subgroup of order 4.

(iv) _____ The group of integers \mathbb{Z} has a subgroup of index 4.

(v) _____ The permutation $(1\ 2\ 3\ 4)(5\ 6)(7\ 8\ 9)$ in S_9 has order 12.

(vi) _____ The permutation $(1\ 2\ 3\ 4)(5\ 6)(7\ 8\ 9)$ in S_9 is odd.

Name: _____

University of Colorado

Mathematics 3140: Second In-Class Exam

June 21, 2024

Problem	Points	Score
1	30	
2	20	
3	30	
4	20	
Total	100	