

1. (20) Show that $x^2 - 13y^2 = 2$ has no solutions in integers x and y . Hint: mod 4.

2. (20) Use the Euclidean Algorithm to find $\gcd(15343, 54203)$.

3. (20) Find a pair (x, y) of integers solving

$$15343x + 54203y = \gcd(15343, 54203).$$

(You don't need to find all solutions, just one pair (x, y) .)

4. (20) For each of the following congruences, either describe all solutions in integers x , or explain why there are no solutions.

(i) $12x \equiv 6 \pmod{60}$

(ii) $6x \equiv 12 \pmod{60}$

(iii) $6x \equiv 4 \pmod{8}$

5. (20) True or False. Mark with a “T” or an “F,” and provide a brief explanation (a couple of lines), for each part.

(i) _____ If a is even and b is odd then $\gcd(a, b) = 1$.

(ii) _____ If a , b and c are natural numbers such that $a < b < c$ and $a^2 + b^2 = c^2$, then a is odd.

(iii) _____ The equation $60x + 85y = 5$ has infinitely many solutions in integers x and y .

(iv) _____ If a and b are natural numbers with $\gcd(a, b) > 1$, then there exists a prime number p such that $p|a$ and $p|b$.

(v) _____ If a and b are integers with $2a \equiv 2b \pmod{7}$ then we must have $a \equiv b \pmod{7}$.

(vi) _____ If a and b are integers with $2a \equiv 2b \pmod{10}$ then we must have $a \equiv b \pmod{10}$.

Name: _____

University of Colorado

Mathematics 3110: First In-Class Exam

February 11, 2004

Problem	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
Total	100	