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- Abstract -

As the title suggests, this paper discusses the applications of several mathematical concepts to computer
animation software generally used in the creation ofmovies and video games. Topics coveredwill include
di�erential forms, conformal maps, surface texturing, and lighting techniques. It is not the goal of this
paper to present anything particularly novel to the mathematical community, but rather to present
something that is entertaining to read that will hopefully engage both mathematicians and sane people
alike. This paper has been carefully crafted so that it should be accessible to most people with a Calc.
I background. That being said, the final section of this paper, which contains some of the applications
of math in animation software, should be readable to most people so long as they don’t freak out when
they encounter the rendering equation.
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1. Introduction

There is a question that seems to haunt almost everyMathematics classroom frommiddle school through
college. It is a question thatmath teachers not only know is coming from day 1 but also lament answering
every. Single. Time. Yes, the infamous, “When am I going to use this?” is a question that stirs the
exasperation of math teachers everywhere. Now, this is not because it is a di�cult question to answer
(indeed, there are whole libraries filled with the answers to this question), but, rather because this is a
question that is di�cult to answer in a way that is satisfactory for the student since most of the answers
that come to mind are examples from STEM fields.

1We might say, “well you need to know how to do this so that you can calculate the concentration of
your solution correctly,” or “you need to know this so you can determine if your results are statistically
significant,” or even, “so you can tell if the study you heard about is trustworthy or not.” But this does
little to appease the budding film student or artist who is only in the math course to fulfill a school
requirement.

Fortunately, in this age of technology, there is good reason for even the artsiest of folk to care about
math! Why? Because computer graphics are a thing, and are fast becoming the mainmedium for creative
expression in the 21st century. Some may argue that it doesn’t really matter if creative people know how
their software works so long as they know how to use it. To this I respond: does it really seem like a good
idea to use anything that you do not have, at least, a basic understanding for? I think not!

And so, in this paper, we will unravel some of the mysteries that surround computer animation software
by examining the mathematics that make them tick. Of course, to keep the math at least somewhat
entertaining, there will be plenty of puns and fun references strewn throughout this work. For those
that are as daft as I am, there are also some recommendations for further research tucked away in the
footnotes2. Before we begin, there are two more peculiarities that I should mention. Firstly, for the
majority of this paper, we will try to stick to at most 3-dimensional space R3 (trust me, this is weird
for math people). Secondly, whereas you may see many books represent points (x, y, z) in R3 using
subscripts like so (x1, x2, x3), in this paper we will be using superscripts (x1, x2, x3) to represent these
points. There are good reasons for this, but they lie a bit beyond the scope of this paper.

1Image from https://www.smbc-comics.com/comic/a-new-method
2Yes, they will look just like this. This isn’t a real recommendation, though; it’s merely an example to get you accustomed

to the format. I will, however, congratulate you on your superb document navigation skills at this point.
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2. A Quick and Dirty Review of Linear Algebra and Calculus

This section is meant to be a hard and fast review of everything that we will need from Calculus and
Linear Algebra to approach the rest of this paper. Those that have already taken those courses and feel
relatively comfortable with the material can turn to page 3941.

- Vectors and You - nothing

Everything that we will be working on in this paper will require knowledge of vectors. Now, before you
go pulling out your can of OFF!™ realize that we are talking about the mathematical object and not the
pest (though, I suppose both are usually easily found in fields). Most of the time, people are introduced
to the notion of vectors in high school physics where they are told that "vectors have both magnitude
and direction." While this is true, it really isn’t the most insightful of definitions. Perhaps a better way
of thinking of vectors is through the lens of all the information that they manage to encode into their
structure. Consider the following diagram of a vector v:

p

v

dx(v)

dy(v)

θ

Within this diagram, v comes with more than just a magnitude and a direction. The vector v contains a
base point p, an angle θ, an x-component which we will call dx(v) (alternatively dx1(v)), a y-component
which we will call dy(v) (alternatively dx2(v)), and a length which will be denoted |v|. This is so much
better than just "a thing with magnitude and direction." Now we have something that we can actually
do math with; more specifically, something that we can add and multiply. Before we do this, however,
there is one caveat that we should mention: we can only add and multiply vectors that are based at the
same point. For those that have heard of vector addition before, this may seem to fly in direct conflict
with the way that you were taught. Many teachers will show the addition u + v

u + p

v

by

u

v

u + v

And this is correct in the sense that it produces the right answer, but using this picture can be a bit
misleading because it seems to imply that we can just move the base points of vectors around all willy-
nilly. A better picture of what u + v means is given by the following image:

u + v

dx(u) dx(v)

dy(u)

dy(v)

1A cookie to anyone that gets the reference, but seriously, turn to page 11.
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It becomes clear from this image that when we talk about adding vectors, it actually means that we are
adding the components of those vectors. This is actually a blessing because it means that we can represent
a 2-dimensional vector v based at a point p using the following notation:

v =

[
dx(v)
dy(v)

]
p

=

[
dx1(v)
dx2(v)

]
p

=

[
v1

v2

]
p

.

For the sake of simplicity, we tend to drop the p from the subscript since addition is only well-defined
between vectors based at the same point. Once we have this representation, though, we can add things
really easily! Huzzah!

u + v =

[
dx1(u)
dx2(u)

]
+

[
dx1(v)
dx2(v)

]
=

[
u1

u2

]
+

[
v1

v2

]
=

[
u1 + v1

u2 + v2

]
.

This is wonderful! Now we just need to find a way to multiply vectors and we’ll be all set to go! But
wait, how on Earth would we want to multiply vectors in the first place? Well, let’s go back to what it
meant to multiply real numbers. When we talked about multiplying a number a by b, we were actually
talking about taking a line segment of length |a| and sticking it end-to-end b times. The resulting line
segment was then given a length of a · b. There is something that is hidden in this explanation, though2:
b could have also been represented as a line segment of length |b| that was parallel to the line segment a.

a, |a| = 1.5 b, |b| = 2 a · b, |a · b| = 3

If we just stick one end of each of these line segments at a point and put arrows at the other end, then
these things start to look a lot like vectors. If at all possible, we would like multiplication of parallel
vectors to work the same way. So for vectors u and v with u||v, we would like

u · v = |u||v|.

But what if u and v are not parallel? How could we hope to define multiplication then? Well, we can
use a little trick called projection. Pictures become really useful here. The projection of a vector v onto
u is given geometrically by

v

uprojuv

θ

At this point, something beautiful happens. If we think back to trigonometry, we realize that we can
represent the length of this projection using v, θ, and the definition of cosine for right triangles. That
is to say

|projuv| = |v| cos(θ).

What’s even better is that now we have two parallel vectors. Using what we already know about multi-
plying parallel vectors, we get that the dot product of two vectors u and v is

u · v = |u||projuv| = |u||v| cos(θ).

2This is starting to become a bit of a theme, no?
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But wait! It gets even better! When we actually want to compute this quantity, it turns out that we only
need to multiply the components of each vector and add them together!

u · v =

[
dx1(u)
dx2(u)

]
·
[
dx1(v)
dx2(v)

]
=

[
u1

u2

]
·
[
v1

v2

]
= u1v1 + u2v2.

Isn’t it beautiful? It almost makes me want to cry. We have managed to multiply two vectors together
and in then end the output is a scalar. A wonderful, simple scalar. What’s even more wonderful is that
we now have a nice way of expressing the magnitude of a vector v sitting in, say, 3-dimensional space
R3:

|v| =
√
v · v =

√
(v1)2 + (v2)2 + (v3)2

My eyes are starting to water. Before I pull out my handkerchief, however, there is something else that
we need to address. When we came up with this definition for the dot product, we motivated it with
geometric interpretation of multiplication of parallel line segments a and b. But, there was nothing
that said that we needed a and b to be parallel. Indeed, if we so chose, we could have placed them
perpendicular to each other. In this case, we could define a di�erent product a × b that would give the
area of the rectangle with side lengths |a| and |b|.

|a× b|a

b

Generalizing this to vectors, we would like to define some sort of product that will give the area of the
parallelogram

|u× v|v

u

As we did in the parallel case, we can use a small trick here to deal with arbitrary vectors u and v. Instead
of taking the component of v that is parallel to u, we can take the perpendicular component

v

u

perpuv

θ

And from this we have the formula

|u× v| = |u||perpuv| = |u||v| sin(θ).

The bad news about this is that giving a nice formula for the computation of this thing for any pair of
vectors can be a bit di�cult. The good news is that in 3-dimensional space, which is what we will mainly
be working with in this paper, the formula isn’t too bad. If we were to let

u

u1

u2

u3

 v =

v1

v2

v3
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which are three dimensional vectors, then

|u× v| =
√

(u2v3 − u3v2)2 + (−(u1v3 − u3v1))2 + (u1v1 − u2v2)2

=
√

(u2v3 − u3v2)2 + (u3v1 − u1v3))2 + (u1v1 − u2v2)2

As you can imagine, goingmuch higher than dimension 3 for this thing can get really messy (and is better
approached using other mathematical tools like the wedge product), so we’re going to stick with this
definition for now. Now, if we actually look closely at this definition, we can see that there is actually
a vector formula hidden in here that we can extract using the definition of “length of a vector” that we
derived just a few moments ago. With this we get that the cross product of two vectors u and v is

u× v =

u2v3 − u3v2

u3v1 − u1v3

u1v1 − u2v2


which is another vector sitting in R3! What’s even better, is that this vector sits perpendicular to the
plane described by u and v, so it can be used to identify the plane spanned by u and v.

This method of identification actually becomes really useful when we start talking about tangent planes
to surfaces embedded in R3, which is what we are going to talk about next.

- Parameterizations and Integrals and Derivatives, Oh My! - nothing

Oh dear, where to start? I think that, perhaps, some intuition development is in order here. For this
let’s think back to what a function, say f , is. Simply put, a function is a set of instructions for how to
take some input x and turn it into some output f(x). For example, the function f defined on the real
numbers by f(x) = x2 says take the input x, raise it to the second power, and when you’re done, that’s
your output. This has a really nice graphical representation inR2 (2-dimensional space) as shown below

f(x) = x2

x

y

−3 −2 −1 1 2 3

1

2

3

4
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With this representation, there comes a new way of thinking about what functions are. The function
f : R→ R : x 7→ x2 (read: function fromR toR defined by taking x tox2) shown above actually shows
a curve embedded inR2. So the function f can also be thought of as a set of instructions of how to bend
and fold thex-axis (points of the form (t, 0)) inR2 into the curve of points of the form (x1, x2) = (t, t2)3

in R2. Or, in other words, the function f can be represented by the set of transformations

x1 = t x2 = t2.

The equations given above are called parametric equations, and since x1 and x2 depend on the same
single variable, this can be considered a parameterization of a curve. Writing out these equations in this
way tends to be a bit cumbersome, though, so for the sake of brevity we will use the notation f̂(t) =
〈x1(t), x2(t)〉 = 〈t, t2〉, or, more generally, α(t) = 〈x1(t), x2(t)〉 to denote the parameterization of a
curve.

Parameterizations turn out to be very powerful tools in mathematics. In general, they allow us to take
k-dimensional objects and represent them in n-dimensional space where k ≤ n. Even a crazy surface
like

can be given a parameterization4. This will be really great when we start talking about manifolds em-
bedded in Rn, but for now, let’s stick with curves in di�erent dimensions.

We now have an understanding of how to draw curves in arbitrarily many dimensions, but drawing isn’t
going to be enough. We actually want to do math with these things (surprise!), so we’re going to need
to develop some tools to work with them. Going back to Calc. I, there were generally two di�erent
mathematical objects that we learned to work with: integrals and derivatives.

In a reversal of the usual Calculus curriculum, we are going to talk about integrals first. The wonderful
thing about integrals is that the way that we think about them in higher dimensions doesn’t really change
that much from the way that we thought about them in lower dimensions. Most students are introduced
to the idea of a definite integral on an interval [a, b] using the idea of Riemannian sums. In essence, you
first draw a bunch of boxes of the same width between a and b and underneath a curve described by
f(x) with one of the top corners lying on the curve. Then you add up the the area of these rectangles

3Remember our convention. For spaces of dimension higher than 1, we use superscripts to represent point axes. So a
point (x, y, z) in R3 can also be given the name (x1, x2, x3).

4This is actually called Enneper’s surface, and it has a parameterization given by f̂(u, v) = 〈u − u3

3 + uv2, v − v3

3 +
vu2, u2 − v2〉. I also like to call it the ragoon surface.
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and take the limit of this sum as the number of rectangles goes to infinity. In math speak this looks like∫ b

a

f(x)dx = lim
n→∞

n∑
i=1

f(xi)∆x.

The images that go with this definition are

Notice that the curve that we are given here is embedded in 2-dimensional space, and that the “area
under the curve” is defined to be the area above the x-axis. When we move to 3-dimensional space the
idea remains the same except, instead of measuring from the x-axis, we measure from the xy-plane. In
graphical terms this looks like

5At this point you may say to yourselfii“Yeah, sure. This looks kinda simple, but how exactly am I
supposed to integrate this thing?” The answer is that you use the parameterization of the curve. If
C : R→ R2 is a curve sitting in the xy-plane with parametric equations given by x(t) and y(t) on the
interval [a, b], f : R2 → R is some function sitting above C in R3, then the line integral of f along C
is given by ∫

C

f(x, y)ds =

∫ b

a

f(x(t), y(t))

√(
dx

dt

)2

+

(
dy

dt

)2

dt

If your eyes are starting to cross while looking at this, then don’t worry too much. What’s important to
remember here is that you can take integrals along 1-dimensional objects (curves). If you were wondering
if this method could be extended to take integrals along surfaces embedded in R3, then you would be
right; we will actually be covering how to do this in the next section whenwe start talking about p-forms.
For now, though, let’s move on to the pièce de résistance: derivatives.

Derivatives are things of beauty in mathematics. They are robust enough that they can give us valuable
information about mathematical objects, and yet flexible enough that they are well-defined on a lot of
interesting functions. When we originally introduce the derivative of a function at a point in Calc. I, we

5Both this and the previous images were from [Ste12].
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tend to pitch it as describing the “slope of the tangent line at that point.” But now we have a new tool
for thinking about curves, and with it, a new way of thinking about derivatives. Let’s go back to our old
friend f(x) = x2.

When we last saw our friend, we had just given her6 a parametric formulation α(t) = f̂(t) = 〈t, t2〉.
Now, we already know that the derivative of f is f ′(x) = 2x. Notice, when we take the derivative of
each of the components of f̂ we get f̂ ′(t) = 〈1, 2t〉. This looks an awful lot like the vector

v =

[
1
2t

]
which we could base at the point (t, t2). Then when we plug in a value for t we end up with some
vector based at a point on the curve described by f̂ that has the same slope as what we expect to see
from the tangent line at that same point. This is not a coincidence! Actually, if we have a general curve
parameterization α(t) = 〈x1(t), x2(t), . . . , xn(t)〉 with vector representation given by

α(t) =

x
1(t)
...

xn(t)

 ,
then the derivative of α can be described using the vector formula

α′(t) =


dx1(t)
dt...

dxn(t)
dt

 .
And, if we wanted to be really picky, we could include the point that we are taking the derivative at to
get something that looks like

α′(t) =


x

1(t)
...

xn(t)

 ,

dx1(t)
dt...

dxn(t)
dt


 .

But this notation tends to get a bit cumbersome, so we tend to omit the base point of the tangent
vector. However, it’s still important to note that it’s there! Remember, we only know how to do math
with vectors based at the same point.

Brilliant! We can now take derivatives of space curves! All that’s left is to figure out how to take deriva-
tives of higher dimensional objects. Well, we run into a bit of a snafu here. While it makes perfectly
good sense to talk about the slope of a curve embedded in some n-dimensional space, the idea of taking
the derivative of something even as simple as the sphere is abstract enough to leave my head hurting.
Fortunately, there is a work around for this. Instead of trying to develop a derivative for the entire
surface at once, we can instead pick a point p on our object to take the derivative at and a direction v
to take the derivative in. Then we just need to find some space curve that lies on our object that has a
tangent vector that points in the same direction as the one that we’ve chosen. The slope of that vector
then becomes the value of the directional derivative.

Really, like many things that we will encounter in this paper, this concept is something that is best
explained with a picture example. Suppose that we want to take the derivative of some function f(x, y)
whose graph is a paraboloid at the point (1, 1) and in the x direction. Then our picture may look
something like

6#feminism
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7In this image, the gray plane represents the “direction” we are taking the derivative in and the tangent
vector for the space curve defined in the x direction will lie on the blue line. There is actually a little
bit more nuance that appears in the rigorous definition of the directional derivative, but this sort of
pictorial intuition will be more than enough to get us through the rest of this paper.

And that’s it for this section! Congratulations on making it through! Now that we have built up a
good intuitive foundation for working with Calculus in 3-dimensional space, I’ll let you in on a little
secret. We have actually been doing Di�erential Geometry this whole time! Curves like our friend
α(t) = 〈t, t2〉 are actually examples of 1-dimensional manifolds, and surfaces like the one in the image
above are examples of 2-dimensional manifolds. As we progress into the next section, we are going to
delve even deeper into what derivatives are and what we are really doing when we take integrals over
manifolds. Isn’t it exciting?!

7Image fromhttps://math.stackexchange.com/questions/469253/visual-intuition-partial-direct
ional-derivative
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3. An Introduction to Di�erential Geometry

We are finally ready to start discussing Di�erential Geometry (which I like to call Super Calculus for
reasons that will become clear shortly)! Before we get to the exciting topic of Discrete Di�erential
Geometry (DDG), however, we will need to cover some of the basic definitions and theorems that arise
in "smooth" Di�erential Geometry first. Why? Well, over the past thirty years or so, DDG arose as an
attempt to apply techniques used in Di�erential Geometry to computer models. Unfortunately, there
are some problems that arise from the attempt to discretize even the simplest notions in Di�erential
Geometry (e.g. the Laplacian, conformal parameterizations, the exterior derivative, etc.). It often turns
out that there is no good "canonical" choice for any of these notions, and which version of, say, the
Laplacian that is used depends on the properties of the given discrete approximation. This lack of a
canonical choice can be attributed to the way that we choose these discrete analogues. There are many
ways that a discrete analogue for a smooth operator can be chosen, and, loosely speaking, the discrete
analogue is often chosen according to what properties we want to preserve from the smooth case. There
are few restrictions on how we choose to go about this, and the only real restriction that we place on
these discrete analogues is that they converge to their smooth form under a mesh refinement. There
will be plenty more on this later, but first it would be a good idea to get an idea of what some of these
smooth objects are.

- Di�erential Forms - nothing

Di�erential forms are a wonderful and elegant tool that we use in Di�erential Geometry to do, well,
almost everything. In fact, anyone that has taken Calculus has seen a di�erential form before; it was
just never called that since as soon as we would try to define it rigorously the term "tangent bundle,"
"cotangent bundle," or "manifold" would pop up and cause undergraduates’ heads to explode. But fear
not! These objects are not that scary, and, again, we have all seen at least one before. Perhaps the easiest
way to think of a di�erential form is in terms of covectors. Now, mathematically speaking, this notion
isn’t exactly right for dimensions higher than 1, but it does serve as a great tool.

Let’s begin with a review of what a vector is. In the previous section we described a vector as being a
point with a direction (or angle) and magnitude (length) attached to it, so a point with a little extra
information. There is another way to describe these objects, however. All of the information about the
angles of the associated vector is preserved in the relation of this point to the origin.

Now, in mathematics, the prefix "co-" is often used in the nomenclature of the mathematical dual object.
Don’t worry too much about what this means, precisely, the most important thing to know about cov-
ectors is that they behave like functions on vectors. Remember how a normal function f “eats” a scalar
x and then “spits out” a di�erent scalar y? Well covectors do almost the same thing except they “eat”
vectors and “spit out” scalars.

- 1-forms on a Manifold - nothing

Now, we mentioned that everyone that has taken Calculus has seen a di�erential form before under a
di�erent name. This form normally appears first in the Fundamental Theorem of Calculus∫ b

a

f(x) dx = f(b)− f(a).

In this case the hidden di�erential form is the dx attached to the end of the integrand. This is an example
of a 1-form, a di�erential form that eats a single vector and spits out a scalar (notice: this is the same
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as what a covector does). What’s the scalar that is spit out? Well if we consider the vector v = 〈x, y〉
(which can be thought of as being based at θ and moving x units in the dx direction and y units in the
dy direction) and we feed it to the covector dx we see that dx(v) = x which was the first coordinate of
v.

This would seem all well and good but when we take an integral, we don’t ever feed the di�erential
form a vector in the first place, so it may almost seem like useless notation that calculus teachers cooked
up to torture students. This suspicion is further compounded by the fact that math professors have a
propensity to drop the aforementioned 1-form after a couple of steps. The next natural question to ask
why on earth do we include the 1-form in the first place then? Well, because it’s incredibly important, that’s
why! This 1-form tells us the direction in which we will be evaluating the integral!

When we are first introduced to this di�erential operator, we are only interested in integrating in one
direction: along the positive x-axis. However, there are two ways to integrate the same curve represented
in the standard coordinate plane R2 as seen below.

y =
√
x

x

y

1 2 3 4

1

2
y2 = x

x

y

1 2 3 4

1

2

In the first case, we are evaluating the integral of this curve section along the dx direction which ends
up looking like ∫ 4

0

√
x dx =

16

3
.

In the second case, we are evaluating ∫ 2

0

y2 dy =
8

3
.

And behold! These two values are not the same! Thismay seem like an obvious thing now, but it becomes
something that is extremely important to keep in mind as we move into higher dimensions. Consider
the following two images:
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Here, we wanted to integrate in the dy direction over some curve embedded in the surface on the left,
so we chose to cut the surface along the plane x = 0 which gives the image on the right. This image just
looks like a curve in R2, which is something that we already know how to take the integral over. But
what if we want to integrate over something that looks like this:

Now, we could try to come up with an equivalent representation of the area under this curve using some
sort of transformation to flatten it out, but this is really di�cult to do in general, and we actually have
a better tool to approach these problems: p-forms.

- p-forms and the Exterior Derivative - nothing

We have arrived at a rather troublesome problem. We want to integrate 3-dimensional shapes, but the
only tools that we have so far are limited to integrals where the curve that we are integrating along is a
straight line. What we need is a tool that allows us to travel in multiple directions at once and allows
us to take integrals over multi-dimensional objects (e.g. surfaces). For inspiration in this we refer to the
mighty Etch-a-Sketch.

The principles behind an Etch-a-Sketch are rather simple; the right knob makes lines running from east
to west and the left knob makes lines running from north to south. Turning any one knob individually,
or sequentially, results in a series of straight lines. But, when the knobs are urned together, it’s possible
to obtain images like1:

1Image from http://pixelobby.com/pixeless-thursday-etch-a-sketch/
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In our situation, the knobs are 1-forms and we want to find a way to make them work together so that
we can take integrals of multi-dimensional objects. We do this using the wedge product.

We have actually seen the wedge product before. Back in the linear algebra section, we referred to it as
the cross product, but in this case we have something a bit more generalizable. The cross product, won-
derful as it is, is really only defined between pairs of vectors. The wedge product, on the other hand, is
well defined on both vectors and covectors. Unfortunately, the rigorous definition of wedge product lies
far beyond the scope of this paper,2 but we will be able to lay down some basic properties of the wedge
product and use some of these properties to derive some useful expressions. We begin with a definition:

Definition 3.1. Let ϕ and ψ be 1-forms on Rn. Then the wedge product of ϕ and ψ is a skew-symmetric,
multilinear product given by

ϕ ∧ ψ.

Now, there are two new words in this definition that we haven’t really talked about yet: skew-symmetric
and multi-linear. Well, an operation like “∧” is said to be skew-symmetric if it has the property that

ϕ ∧ ψ = −ψ ∧ ϕ.

Now, this property won’t be very surprising once we think about it for a moment. If we recall that the
sign of cross-product of two vectors depends on the order that the vectors are multiplied in (this is often
referred to as the “right-hand rule”), that is if

u× v = w

then
v× u = −w,

then we can see that the cross-product is skew-symmetric. The more di�cult property to come to terms
with is multi-linearity. Recall (again from linear algebra) that a map T (u) between vector spaces V and
W is called linear if

T (au + bv) = a T (u) + b T (v).

Multi-linearity functions in much the same way except instead of requiring the map to be linear in one
variable, we require that it is linear in multiple variables, hence the term. The multi-linearity of a wedge
product is pretty easy to express, so we will use this as our pet example:

(ϕ ∧ ψ)(au + bv, cx + dy) = ac (ϕ ∧ ψ)(u, x) + ad (ϕ ∧ ψ)(u, y)
+ bc (ϕ ∧ ψ)(v, x) + bd (ϕ ∧ ψ)(v, y).

As we can see, testing for multi-linearity tends to get rather messy, but we won’t have to do that any
further here. We just need to know that these wedge products possess this property so that we can make
use of it later on. Now, we are finally ready for the definition of a p-form!

Definition 3.2. Let ϕ and ψ be 1-forms on Rn. Then a 2-form on Rn is given by the wedge product

ϕ ∧ ψ.

Similarly, a p-form Φ on Rn is given by the wedge product of p 1-forms {ϕi}pi=1 and is denoted by

ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕp.

nothing
2If you are curious, there are really good treatments of tensor, symmetric, and wedge products in Chapter 2 of in [Cle17].
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We should probably note here that in the same way that 1-forms “ate” singletons (or 1-tuples) of vectors
and spat out scalars, p-forms will eat p-tuples of vectors and spit out scalars. Wonderful, we finally have
a definition for a p-form, which we mentioned that we can use to calculate integrals, so we can finally
start doing useful math, right? Well, wrong, unfortunately. There is still one last thing that we need
to work out before we can move on to some of the more applicable stu�. Up until this point we have
mainly talked about wanting to be able to integrate things, but in the process of doing this, we have
left out a major portion of Calculus: di�erentiation! If we are to have any notion of what it means to
integrate over a p-form, we better have some idea of what it means to take a derivative of one.

This brings us to the notion of the exterior derivative, which we will use to turn p-forms to (p + 1)-
forms, but more on that in a minute. This topic can get rather heady and is probably best approached
by first defining it on a 0-form. Wait? A 0-form? What is that? Be not afraid, my dear, for 0-forms
are some of our best and oldest friends and will be the most familiar of the di�erential forms that we
have met so far. The exact meaning of the term “0-form” is something that we can suss out with only
a little more thought. We started this section with 1-forms (a.k.a. covectors) which took 1-dimensional
objects (a single vector) and turned it into a 0-dimensional object (a scalar), so if the nomenclature is
to be believed, then a 0-form should take a 0-dimensional object (a point) and turn it into another 0-
dimensional object (a scalar). Well, this is exactly what a function does! Observe, the function defined
by

f(x1, x2, x3) = f(x, y, z) = 3xy + y cos(z)

takes some point3 (x, y, z) ∈ R3 and turns it into a scalar 3xy + y cos(z) ∈ R. Now what happens
when we take the derivative of this thing? First we become confused, and we start asking what variable
we are supposed to take the derivative with respect to. How about we take all of them? Then we have
that

∂f

∂x
= 3y,

∂f

∂y
= 3x+ cos(z), and

∂f

∂z
= −y sin(z).

So how do we make a full derivative out of this? Well, we can add them all together, maybe. But to keep
track of which direction each part of the derivative was taken in, we better give them a tag. This will
give something like

df(x, y, z) = 3y dx+ (3x+ cos(z)) dy − y sin(z) dz.

The astute may recognize this as looking a lot like the definition of the gradient of a function and with
good reason. This is exactly the expression for the gradient of the function written in the language of dif-
ferential forms. Running with this analogy, we know that the gradient of a function gives the direction
of maximal increase of the function. This intuitively tells us that if there was to ever be a generalized
notion of derivative, this would have to be closely related to it. And it is4 which means it’s definition
time!

Definition 3.3. If f : Rn → R is di�erentiable, then the exterior derivative of f is a 1-form denoted by
df with the property that for any point x̂ = (x1, . . . , xn) ∈ Rn and for any tangent vector u to f based
at the point x̂

dfx̂(u) = u[f ].

In other words, dfx̂(u) is the directional derivative5 of f at x̂ in the direction of u.
3Recall that we are using (x1, . . . , xn) to represent points in Rn

4It’s almost like I planned this.
5For those who have forgotten what exactly this means feel free to look back at the end of Section 2. This stu� is hard

and takes some time to get straight in your head.
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Looking at this definition, we see that df is, in fact, a 1-form and that by taking the exterior derivative
of a 0-form we got a (0 + 1)-form. This is good, but there is another troublesome thing that we have to
deal with before we go any further: how do we know that the expression of df that we just derived was
the “right” one? Well, we are actually incredibly fortunate in that regard. We happen to know that the
1-forms (dx1, . . . , dxn) form a basis for all the 1-forms on Rn (in the linear algebra sense) and that any
1-form ϕ has a unique expression

ϕ =
n∑
i=1

fi(x̂)dxi,

where the fi are 0-forms. Now we move on to p-forms, and again, we will use R3 as an example.

Working o� of the basis of 1-forms (dx1, dx2, dx3) of R3 can see that in R3 the basis of 2-forms can be
given by (dx1 ∧ dx2, dx2 ∧ dx3, dx3 ∧ dx1) since we know that dxj ∧ dxj = 0 (to see why this is,
consider our good ol’ friend the cross product) and dxi ∧ dxj = −dxj ∧ dxi. So any 2-form ϕ ∧ ψ in
R3 can be expressed as

ϕ ∧ ψ = f1(x̂) dx1 ∧ dx2 + f2(x̂) dx2 ∧ dx3 + f3(x̂) dx3 ∧ dx1

=
∑
|I|=2

fI(x̂) dxi1 ∧ dxi2

where I is an indexing set that ranges over all multi-indices (i1, i2)6. Building o� of this, we get a unique
expression for a p-form Φ over Rn

Φ =
∑
|I|=p

fI(x̂) dxi1 ∧ · · · ∧ dxip

where I is again an indexing set that ranges over all multi-indices (i1, . . . , ip). With this, we are finally
able to give a definition for the derivative of a p-form.

Definition 3.4. Let Φ =
∑
|I|=p

fI(x̂) dxi1 ∧ · · · ∧ dxip be a p-form on Rn. Then the exterior derivative of

Φ is given by ∑
|I|=p

dfI ∧ dxi1 ∧ · · · ∧ dxip .

Now my brain hurts. Why did we want these things again? They almost look too complicated to be
worth the time. Au contraire, my good friend, these things are incredibly useful. We started this whole
endeavor on the quest for integrals in n-dimensional space, so perhaps it’s time we actually see why
p-forms are the thing that we want to integrate. When we first take Calc. I we are taught that integrals
are, essentially, sums of infinitely thin rectangles. When we move on to Calc. III, these infinitely thin
rectangles turn into infinitely skinny rectangular prisms as shown below:

6If the second line with the big sigma doesn’t make sense, don’t worry too much. The important thing is to understand
why the first line is true.
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7 How does this all relate to p-forms? Well, it’s because when p-forms “eat” vectors, they give us the
volume of a p-dimensional parallelogram. This actually translates really well to the cross-product that
we have been using throughout this section. When we originally defined the cross product u× v of two
vectors u and v, we said that the vector that the product returned was the normal vector to the plane
that they spanned and that the length of this normal vector was the area of the parallelogram that u and
v created. Now, if we consider the 2-forms that we already defined on R3, then we get thatdy ∧ dzdz ∧ dx

dx ∧ dy

 (u, v) = u× v

More specifically, we get that wedge products like dy∧dz(u, v) return the area of the parallelogram generated
by u and v projected onto the plane spanned by the y and z-axis. Note, these axes can also be represented
by the directions dy and dz. Perhaps this is easier to understand with another picture. Let α and β be
two orthogonal 1-forms (e.g. dx and dy) and let u and v be two vectors. Then the value of α ∧ β(u, v)
is given by the area of the “shadow” shown below8:

7Images form [Daw18].
8Image from [Cra17].
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Great! Now that we have all of this wonderful exposition on what p-forms are, can we finally see how
on earth we are supposed to use them? Right, I’m sorry for the wait, but I promise that it’s worth it. We
already talked about how p-forms allow us to integrate in higher dimensions, but that’s not what makes
them great. If you’ve ever taken Calc. III, then you have probably seen the following theorem:

Theorem 3.5. (Stokes) Let S be an oriented piecewise-smooth surface that is bounded by a simple,
closed, piecewise-smooth boundary curve C with positive orientation. Let F be a vector field whose
components have continuous partial derivatives on an open region in R3 that contains S. Then∮

C

F · dr =

∫∫
S

(∇× F) · n dA,

where n was the unit normal of the surface S.

Just looking at this thing makes my eyes want to cross! There’s a ton of stu� in here; gradient (∇), a
scalar triple product, the di�erential of a line parameterization (dr), and whatever dA turns out to be.
And it only really works for three dimensions! Fortunately, there is a better way of defining this thing.

Theorem 3.6. (Grandpa Stokes9) LetM be a closed, oriented, (p+1)-dimensional manifold, ∂M denote
the p-dimensional (possibly empty) boundary ofM with orientation corresponding to the orientation
ofM , and Φ be a p-form onM . Then ∫

∂M

Φ =

∫
M

dΦ.

And now we can take an integral of an n-dimensional object with no problems. “Really?” you say
dubiously. Yep! “Why?” you ask, feeling evermore incredulous. Because Stokes was a bloody10 genius
and math is11 beautiful like that.

Now that we have talked at length about the wonderful world of p-forms, we can finally a�ord to take
a step back and talk about objects that make implicit use of p-forms in their definitions. In our case,
we are primarily interested in objects called conformal maps, which we will see used in order to create
textures for animated models.

- Metrics and Conformal Maps - nothing

When we talk about conformal maps, intuitively we are describing a function from one space to another
which preserves the angles between (tangent) vectors. Notice: this definition says nothing about pre-
serving the lengths of these vectors and those that do are actually a special instance of a conformal map
called an isometry. But I’m getting ahead of myself. We should probably start out with an example of
what a conformal map looks like. The easiest place to find an example of a simple conformal map would
either be in a third grade geography room or in the study of an action movie villain from the 60’s. I’m
talking of course about globes. It’s pretty easy to see that the angles between two points on a globe are
the same as the corresponding points on Earth12, so the “function” that takes the Earth and turns it into
a globe is an example of a conformal map.

9This is actually still called Stokes’ Theorem in the literature, but I like to imagine this one wearing a big, gentlemanly
mustache.

10I feel that there should be some sort of expletive here, but if I did that my proofreader would certainly remove it and I
would end up on the receiving end of a lecture I would rather not sit through. Just know that it’s there in spirit.

11See previous footnote.
12Technically, this isn’t quite right, but we’re going for intuition here so just roll with it.
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If we expand on this example, there are other, less obvious examples of conformal maps that we have
seen before: World Atlases. In these books you may have seen the following two maps13:

If you look closely, you will see that these maps contain complete images of the globe except the one
on the left is missing the south pole and the one on the right is missing the north pole. This is not by
accident. These charts were constructed using a technique called stereographic projection14. Again, a
picture becomes useful here:

15 This image shows the stereographic projection of the globe from the north pole. The projection is
constructed by treating the globe like a giant lampshade. First, the north pole of the globe is removed
and a “lightbulb” is put in its place. When the light is turned on, the image of the lampshade on the floor
forms the stereographic projection of the globe itself.

13Images from http://www.atractor.pt/mat/loxodromica/projeccao_estereografica-_en.html
14If you haven’t heard this term before it’s worth some looking into. The stereographic projection is one of the main

techniques that we use to do math with∞.
15Image from [DC76]
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Hopefully, it’s believable that the angles between things on the surface of the globe are the same as
the angles between their images on the floor. If not, feel free to take a moment to go find a spherical
lampshade and test it for yourself.

Back to our two stereographic projections, there is one more thing that we should worry about. Suppose
that we define a chart on the globe to be the ordered pair (U, σ) such that U is the set that represents
the surface of the globe excluding the north pole and σ represents the function that takes U and turns
it into its stereographic projection. Similarly, let (V, σ̃) be defined for the globe minus the south pole
and consider an angle θ defined by two vectors u and v not based at the north or the south pole. We
might worry that when we map the image of U on the floor below our lampshade, denoted σ(U), to the
image σ̃(V ) directly, the angle θ may become distorted somehow. In other words, we may worry that
the transition map from σ(U) to σ̃(V ) is not conformal. This can sometimes be a problem with complex
surfaces, but with the way that we have chosen our charts on the globe lampshade this doesn’t happen.
At this point, we have arrived at something that would be useful to refer to in the future, and, as such,
could do with a definition.

M

σ(U) σ̃(V )

σ̃σ

σ̃ ◦ σ−1

Definition 3.7. (Note: There is an image that goes with this on the next page.) LetM be a manifold.
If (U,ϕ) and (V, ψ) are two charts such that the domains U and V have non-empty intersection (i.e.
U ∩ V 6= ∅), then the composite map ψ ◦ ϕ−1 is called the transition map from ϕ(U ∩ V ) to ψ(U ∩ V )
(you can think of this map as a method of transforming the image σ(U) from our lampshade into the
image σ̃(V )). Two charts (U,ϕ) and (V, ψ) are said to be conformally compatible if either U ∩ V = ∅
or the transition map ψ ◦ ϕ−1 is a conformal map16. We define an atlas A forM to be a collection of
charts whose domains (the sets U, V, etc.) coverM . Moreover, we say that A is a conformal atlas if any
transition map between two charts is conformal.

16It may be worth it to note here that the transition map ψ ◦ ϕ−1 takes the set ϕ(U ∩ V ) to the set ψ(U ∩ V ).
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17 Here’s a familiar word. As it turns out, mathematicians aren’t the most creative of sorts, and tend to
name things with whatever real-life object seems the closest to what we are trying to name. But there
may be something a little more concerning here. We have spent the past couple of pages talking about
how conformal maps preserve angles, but we haven’t really talked about how we can determine the angle
between two vectors. We may be tempted to pull out our handy-dandy pocket protractor and just mea-
sure the angle using that, but that can become a bit of a hassle especially on a smooth manifold where
we would have uncountably infinitely many such angles to measure. Fortunately, we can do this much
more e�ciently by defining an inner product structure on the given manifold.

Definition 3.8. 18An inner product on the vector space Rn is a function

〈·, ·〉 : Rn × Rn → R

with the following properties:

1. Symmetry: For any vectors u, v ∈ Rn, 〈u, v〉 = 〈v, u〉.

2. Bilinearity: For any vectors u, v, z ∈ Rn and any scalars a, b ∈ R,

〈au + bv, z〉 = a〈u, z〉+ b〈v, z〉

and
〈z, au + bv〉 = a〈z, v〉+ b〈z, v〉.

3. Positive definiteness: For any vector u ∈ Rn, 〈u, u〉 ≥ 0 with equality if and only if u = 0.

This actually leads to a definition of something that has been said a couple of times in this paper, but
that has not been made explicitly clear.

Definition 3.9. The vector space Rn endowed with an inner product 〈·, ·〉 is called Euclidean Space and
is denoted En.

Like the wedge product, this inner product is something that we have seen before in disguise. In this
case, instead of corresponding to the cross product from linear algebra, the inner product corresponds

17Image from [Lee03].
18This is exactly the definition given on pg. 70 of [Cle17].
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to the dot product. In fact, the way that we calculate the inner product of two vectors in R3 is exactly
the same way that we calculate the dot product of two vectors. What may not be so obvious, however, is
that when we impose an inner product structure on a vector space like Rn, we automatically determine
a metric (a definition for “length”) on that space. In the case of En the length of a vector u is given by

|u| =
√
〈u, u〉.

But for conformal maps we are interested measuring the angle between vectors, not their length. For
this it’s useful to remember that

u · v = |u||v| cos(θ).

using this and the fact that the dot product is a special case of the inner product, we get that the angle
θ between two vectors u and v in Euclidean space is given by

θ = cos−1

(
〈u, v〉
|u||v|

)
.

Notice here that, since we divide by the length of the vectors u and v, the angle θ between 2u and v is
the same as the angle between u and v, and, as it turns out, this is exactly the sort of thing that we need
to determine if a map is conformal.

Definition 3.10. LetM and N be manifolds with inner product structures given by 〈·, ·〉M and 〈·, ·〉N .
A map F : M → N is called conformal if for any pair of vectors u and v tangent toM at some point
p̂ ∈M

〈u, v〉M = λp̂〈dF (u), dF (v)〉N ,

where λp̂ is some scalar dependent on the choice of the point p̂ and dF is the di�erential of F . (Note:
dF behaves like the derivative in the sense that it is the best linear approximation toF at p̂. It is actually
a map that operates by taking tangent vectors toM at p̂ to tangent vectors toN at F (p̂).)

Finally! We have arrived at a good definition. At this point, I would like to congratulate you. This
stu� is really di�cult, especially the last two pages. It may not look like it, but we have secretly been
wrestling with objects that most mathematicians don’t see until grad school, and even then these things
can take a long time to really understand. If you have made it this far, though, I might suggest a five
minute break before moving on to the next section; if you have not made it this far then, clearly, you are
already ahead of me. Anyway, for the rest of this paper we will look at how exactly these structures that
we have defined on smooth manifolds translate to discrete ones and why these sort of things matter for
3D animation and rendering.
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4. Moving into the Discrete Case

Before we fully begin this section, a bit of a warning is in order. This will be the section of this paper that
is most challenging, mathematically speaking. I will try to provide intuitive examples and explanations
for things, but we are fast approaching the limit of where such things are useful or even possible. That
being said, with everything that we have covered up until now, the last section of this paper should be
accessible. Should you find your eyes glazing over and rolling into the back of your head at any time
during this section, feel free to move on to the next section. That is, after all, the upshot of this whole
thing.

Alright, disclaimer over. In this section we get into the nitty-gritty of discrete manifolds. What they are,
how they are di�erent from smooth manifolds, and, most importantly, how the structures and things
that we defined for smooth manifolds translate to the discrete case. As it turns out, not everything
that we define on smooth manifolds has a nice, ready-made discrete analogue. In fact, we often find
that objects that were relatively intuitively defined on smooth manifolds, like the derivative at a point,
become much more di�cult to define in a discrete setting. Likewise, things that were a little tricky to
define in the smooth setting are readily defined on discrete structures1. I think that Dr. Keenan Crane
from Carnegie Mellon puts it best when he says research in Discrete Di�erential Geometry is often
organized like a game. This “game” comes with three steps:

1. Write down multiple equivalent definitions of a smooth object or theorem.

2. Apply each of these smooth definitions to a discrete object.

3. Weigh the pros and cons of the discrete analogues under these di�erent definitions.

This last step turns out to be the most important one. We often find that when we choose to apply
multiple definitions to the discrete setting, the objects that we get out fail to preserve all of the prop-
erties that they used to have in the smooth setting. The definition that we ultimately decide to use is
often determined by the properties that we want to preserve and how “good” an estimation the discrete
analogue provides.

- Dealing With Discrete Manifolds - nothing

At the beginning of the previous section, we alluded to some of themajor di�erences between the smooth
and discrete versions of Di�erential Geometry. These di�erences arose principally from the way that
we chose to define what it meant to be a “good” discrete version of a smooth concept. Specifically, we
said that that a given estimation was "good" if it converged under mesh refinement. What exactly does this
mean? Before we can start into this, we need to talk about triangles.

In mathematics, and especially in geometry, triangles are wonderful things. In fact, they can be used
to encode many things about the geometry of the manifold that they lie on. For example, the sum of
the angles of a triangle can determine if a manifold is locally concave, flat, or convex. Consider the the
normal unit sphere embedded in R3 and the triangle along the surface of the sphere described by the
points (1, 0, 0), (0, 1, 0) and (0, 0, 1). This triangle has angles that sum to 270o, which is greater than
the standard 180o that we see in Euclidean space. This small fact tells us that the sphere is an example
of a locally elliptic manifold. Similarly, if the angles of a triangle add up to less than 180o, the manifold

1A good example of this is the Euler characteristic, which is given a good discussion in §6.6 of [Opr07].
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is locally hyperbolic2.

The triangles in the image above (one highlighted in orange) are made using curved lines which don’t
do us any good when we are modeling using computers. The point still stands, however, that triangles
are important to our understanding of the geometry of the manifold itself. But manifolds are not al-
ways nice and have this annoying tendency to live in n-dimensional space, so, we have to construct an
n-dimensional analogue of a triangle called a simplex.

Definition 4.1. Let V = {v0, v1, . . . , vk} be a collection of k + 1 points. A k-simplex is the minimal
convex set that contains the points {v0, v1, . . . , vk}.

And how, exactly, is this thing supposed to be a triangle? Let’s start with what it means to be a convex
set. Simply put, a convex set is a connected set such that any pair of points in that set can be connected
with a straight line and that line will remain within the set. Here’s a picture:

3 Extending this notion to include vertices of a a polytope4 we get that k-simplices look something like
the following:

5In the image above we have, from left-to-to right, a 0-simplex, a 1-simplex, a 2-simplex, and a 3-simplex

2Elliptic and Hyperbolic geometries actually pop up everywhere in science. It is actually a really common practice in
physics to embed hyperbolic surfaces in Minkowski space which is used to model space-time in the study of Einstein’s theory
of special relativity.

3Image from https://www.easycalculation.com/maths-dictionary/convex_set.html.
4Think k-dimensional polygon.
5Image from [Cra17].
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all of which correspond to what we would think a “triangle” would look like in 0, 1, 2,and 3-dimensional
space. However, in our work, we will not just be working with a single k-simplex because that would be
boring. Instead, we want to be able to talk about groups of simplices and the relation of each of those
simplices to the overall group. First of all, if we have a simplex named σ and another simplex named τ
where τ is contained in σ (τ ⊆ σ), then τ is called a facet of σ. For example, if σ is a tetrahedron and τ
is one of the faces of σ, then τ is a facet of σ. This brings us to the notion of a simplicial complex.

Definition 4.2. A simplicial complex Σ is a union of simplices, such that

1. If a simplex σ belongs to Σ, then all its facets also belong to Σ.

2. If two simplices in Σ intersect, then their intersection is a common facet.

How does this all relate to manifolds? As it turns out, there is an old theorem from topology that says
any 2-manifold (think surfaces) sitting in Euclidean space can be triangulated. That is to say, any smooth
surface can be approximated using a triangular mesh. What, exactly, does this look like? Fortunately,
there are pictures for these things:

In the image above on the left we have a smooth version of the animator’s favorite lagomorph: the
Stanford Bunny. On the right, we have a triangulation (a.k.a. a triangular mesh or just a mesh) of the
smooth bunny. The astute reader will notice at this point that the image on the right looks suspiciously
like a simplicial complex, and that’s because it is. A triangulation of a 2-manifold actually turns out to
be 2-dimensional simplicial complex (i.e. all the facets are at most 2-simplices) that is also a manifold
in its own right. And just like that we have stumbled upon our first example of a discrete manifold6.

This is wonderful but, now that we know what a discrete manifold is, we have to start doing math on
them. This can get a bit tricky when we start defining mathematical objects that we hope to be similar
to those that we defined on smooth manifolds. How are we to do this? Well, we have now mentioned
several times that we want our discrete objects to converge to their smooth analogues under refinement
of a mesh, so, perhaps, it would be a good idea to talk about what exactly it means to refine a mesh.

As with most things in DDG, there are several good ways that we can choose to refine a mesh. Since
we are working with triangular meshes (and, yes, you could choose to work with a mesh made of, say,
quadrilaterals), we will usually refer to a

√
3 mesh refinement. But, I’m getting ahead of myself. First we

6We are actually making a bit of an assumption here. Not all discrete manifolds turn out to be simplicial complexes, but
they can be turned into simplicial complexes fairly easily.
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need to discuss what a mesh refinement actually does. Well, the best way that I could describe it is that a
mesh refinement takes a mesh and makes it look smoother while preserving the underlying geometry of
the object. It does this by breaking up the triangles in such a way that all of the triangles in the resulting
mesh are significantly smaller by comparison. As we do this ad infinitum, we want these triangles to
converge into points and our mesh to converge to the smooth object that we were approximating.

So what does it mean for an object in DDG to converge under refinement to its smooth analogue? It simply
means that if we were to approximate a smooth 2-manifold with a triangular mesh then any object that
we define on that triangulation needs to behave like its smooth analogue as the number of faces in the
mesh go to infinity.

- Calculus on Discrete Manifolds - nothing

Now that we have the necessary slew of definitions out of the way, it’s time to do some math!7 Right, so
the main reason that we have had manifolds up to this point is so that we can do calculus on them, and
discrete manifolds are no di�erent. Now we have to be more careful, however, as we have mentioned
multiple times that discrete surfaces can wreak havoc on even the most carefully constructed of defini-
tions. We started the last section with di�erential forms, so why don’t we revisit those again in this new
setting.

First let’s remember what 1-forms were supposed to do. We had an example of the 1-form dx which
took any vector v and pulled o� the x component. So, the 1-form gave us the degree to which the vector
v went in the same direction as dx. When we started integrating 1-forms over a curve C we actually
took the tangent vector at each point along the edge of C , fed it to the 1-form, and summed up the
resulting values. We can use this same principle to describe a discrete 1-form. If we let ϕ be a 1-form, Σ
a simplicial complex, and e ⊆ Σ a 1-simplex, then the discrete 1-form of ϕ along e is given by

ϕ̂e :=

∫
e

ϕ.

By describing the discrete 1-form in this way, we are then able to encode the information gathered by

7I can only imagine enthusiasm radiating o� you at this exact moment.

26



this 1-form into the simplicial complex itself by storing the values of the these 1-forms along the edges
of the mesh as can be seen in the following image:

8If we actually extend our notion of a discrete 1-form to p-forms, we get that discrete di�erential p-forms
are just the values of p-forms evaluated over a p-dimensional cell.

Now, this seems all well and good, but when we start to define 1-forms in this way we can run into a
bit of trouble. Since our discrete 1-form is just a set of values that is stored along the edges of our mesh,
there is nothing that really stops us from futzing with these values. In fact, we could just assign numbers
to the edges of the mesh randomly and it would make a perfectly good discrete 1-form. Likewise, there
is nothing that says that the values that we store on these edges need to be real-valued; choosing instead
to assign complex numbers, vectors, or counts of pineapples to each edge works out completely well so
long as we remain consistent across all edges in a mesh. But if these things are so easy to exploit, then
why on earth would we want to define our 1-forms this way? Well, because it makes taking derivatives
and integrals almost stupidly easy.

Remember Grandpa Stokes’ Theorem? In case you don’t, here’s a refresher:∫
∂M

Φ =

∫
M

dΦ.

Basically, this says that we can integrate any di�erential form so long as we know what the integral is
along the boundary. But wait just a tick; we already calculated the integral of a 1-form over all the edges
in our mesh, which means that for any triangle σ and any smooth 1-form ϕ,∫

σ

dϕ =

∫
∂σ

ϕ =
3∑
i=1

∫
ei

ϕ =
3∑
i=1

ϕ̂i.

Furthermore, we get that the thing on the left is actually a discrete di�erential 2-form, which we will
now call d̂ϕ̂. This new operation d̂ is exactly what we expect it to be: it’s the discrete exterior derivative.
Well now, this is quite lovely. By defining our 1-forms as values associated to edges of our simplicial
mesh, we have gotten that the discrete exterior derivative simply applies Grandpa Stokes’ to a p-form
that has already been integrated over each p-simplex and returns the integral of the derivative over each
(p + 1)-simplex. Now, there needs to be a small word of caution when it comes to applying this thing

8Image from [Cra17]. For those that are interested, this image is also an example of a weighted, directed graph. It turns
out that many of algorithms for actually computing the values of discrete objects described in DDG actually employ results
graph theory.
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to a real mesh. In the statement of Grandpa Stokes’ Theorem, we assumed that the manifold that we
were working with had an orientation. We want this to still be the case when we are integrating over
simplicial meshes! This tells us that we need to define d by adding the piecewise integrals over the
simplicial complex, and that we need to be especially conscientious of the sign of the 1-form that we are
adding. For example, we may have

(d̂ϕ̂)1 = ϕ̂1 + ϕ̂2 + ϕ̂3

and
(d̂ϕ̂)2 = ϕ̂4 + ϕ̂5 − ϕ̂2

when we consider the following pair of 2-simplices:

9With all of this groundwork finally in place, we canmove on to the upshot of this whole section: discrete
conformal mappings.

- Discrete Conformal Mappings - nothing

It’s finally time for the last topic of this section. It’s been long and arduous process getting here, but,
out of everything that we have seen, this is actually the thing that will be most directly applicable to the
world of 3D rendering. If we remember way back to the end of the last section of this paper, we will
recall that a map F : M → N is called conformal if for any pair of vectors v and w tangent toM at
some point p̂ ∈M ,

〈v,w〉M = λp̂〈dF (v), dF (w)〉N ,
where λp̂ is some scalar dependent on the choice of the point p̂. This notion of conformality is depen-
dent on there being a defined metric (sense of length) on the manifold that we are interested in, so we
should first give a definition for what it means for a discrete manifoldM . First we will note that the
types of discrete manifolds that we are working with come equipped with a set of Vertices (V ), a set of
Edges (E), and a set of Triangles (T ) and can be described using the tripleM = (V,E, T ).

Definition 4.3. A discrete metric onM is a function ` on the edges ofM that assigns to each edge eij ∈ E
a positive number `ij so that the triangle inequality holds for all triangles tijk ∈ T .

Great, now we have a way to measure lengths and, since the manifolds that we are interested in are
already embedded in Euclidean space, we also have a way to measure angles between vectors, so we are
completely ready to start trying to construct conformal maps.

We saw in the last section that if we considered the Riemannian sphere with one of the poles removed
then we could use the stereographic projection tomap the globe down into a small disk. This is actually a
special case of the Riemannmapping theoremwhich says that any simply-connected (no holes), bounded
(has an end that you can fall o�) Riemannian manifold can be conformally mapped to the unit disk. If
we were to design some sort of conformal map on discrete 2-manifolds for use in computer animation, it

9Image from [Cra17].
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would be really nice if the map would have this property since this would allow us to fold plane textures
(like wood) into complicated shapes without distorting that texture.

Well, the last time that we wanted to make a conformal map, we required that that the angles between
vectors on our manifold be preserved, so it would be nice if discrete manifolds would allow us to use
this same definition. Unfortunately, this definition turns out to be a little more rigid than we would
like it to be. By requiring that the angles between vectors be preserved completely, we end up imposing
an unintended condition on the set of triangles T of our discrete manifold. If all of the angles between
vectors are preserved under the conformal mapping ofM , then so too must the interior angles of any
triangle tijk be preserved. This means that the only thing that a given triangle tijk would be able to map
to would be a similar triangle

10Why is this a problem? All of the triangles in our mesh are connected; more importantly, they are
connected along their edges. This means that once we make a choice on how to scale a single triangle,
the entire rest of the map is completely determined. What’s even worse is that when we do this, we
can’t perfectly flatten the manifold, much less turn it into a disk. To even get close requires solving a
non-linear optimization problem with non-convex, non-linear constraints (translation: it’s a massive
headache).

This is just peachy. We’ve hit a brick wall; what on Earth are we supposed to do now? It’s time to consult
our favorite long-eared friend.

11Our next idea comes to us from a man by the name of William Thurston. Back in the 1980s, Thurston
observed that conformal mappings between manifolds preserved infinitesimal circles. To see why this
could be exciting, we first need to note that any planar graph G = (V,E) can be turned into a circle
packing. How? Well if we consider a planar graph like the following:

10Image from [CWW+18]
11Image from [ZG13].
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Then if we were to project the vertices of this graph onto a plane (easy to do in this case), a circle packing
for this graph could them be constructed by first placing each of the vertices at the center of some small
circle. After that, each of the circles can be inflated in such a way so that they touch tangentially and
fill some circumscribing circle like so:

If we combine this with the fact that we want conformal maps to behave well under Möbius transfor-
mations, then this idea from Thurston becomes more promising as we consider a theorem from Koebe
in 1936:

Theorem 4.4. (Koebe) If G is a finite maximal planar graph, then a circle packing of G is unique up to
Möbius transformations and reflections where a Möbius transformation is a function f : C→ C of the
form:

f(z) =
az + b

cz + d

where a, b, c, d ∈ C.

This means that if we take some Möbius transformation on the circle packing that we just provided for
our planar graph
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then the resulting packing will also work as a circle packing for the same planar graph. This may seem
wrong at first glance, but if you take the time to look at the provided example, you will find that every-
thing turns out fine. Okay, now this is getting good. We now have assurance that any circle packing that
we use to describe a given graph will be unique up to some equivalence relation. Now we just need a way
of formalizing the idea that a circle packing can behave like conformal map. Here, our friend Thurston
comes to our aide once more with the following theorem:

Theorem 4.5. A circle packing of a regular hexagonal tiling of a region in the plane approximates a
smooth conformal map by preserving the angles between centers of circles in a given packing.

Don’t worry about what a hexagonal tiling is at this point. This sounds almost perfect, but it is at this
point that we should take a step back and examine what it is that we are doing, exactly. We claim that
by turning a piece of our simplicial complex into a circle packing we have constructed a conformal map.
But we have yet to actually use anything about the geometry of the simplicial complex itself. All that we
have used are the combinatorics. This means that that these two simplicial complexes

will both map to the packing that we saw earlier

12This can’t be right! Themetrics on our simplicial complexes have been almost completely ignored! This
tells us that, in general, the notion of circle packing is too flexible to be used to determine conformal
maps.

So, what now? Well, we use what we have learned to narrow down our choice of definition that we
start with and we try again. We saw in our first attempt that it is too much that to ask that the angles

12Images from [CWW+18].
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inside of the triangles be preserved completely, but we also saw from the second example that we can’t
just forget about the geometry of the mesh entirely. We need a definition that depends on the metric of
our manifold, but that won’t be determined by the way that we deform a single triangle. Consider the
following definition:

Definition 4.6. Two Riemannian metrics g and g̃ on a di�erentiable 2-manifoldM are said to be con-
formally equivalent if

g̃ = e2ug

for some smooth function u : M → R.

This definition turns out to be equivalent to the definition that we gave for the smooth case earlier, but it
is convenient because it allows us to deal with logarithms of lengths instead of straight scalar multiples.
In this sense, this definition is more forgiving on the ways that we distort the metric and it provides us
with a simple discrete analogue.

Definition 4.7. Two discrete metrics ` and ˜̀ on M are (discretely) conformally equivalent if, for some
assignment of numbers ui to the vertices vi, the metrics are related by˜̀

ij = e(ui+uj)/2`ij.

This definition is particularly nice because it behaves how we would want it to under transformations
of space13. It’s rather easy to notice, however, that with this definition neither the angles of triangles in
our mesh nor the lengths of the edges of these triangles are well-preserved, and so we might ask what is
preserved by these transformations. The answer is cross ratios.

Definition 4.8. Given a discrete metric ` and an interior edge eij between tlij and tijk, we can associate
with eij the length cross ratio which is defined by

cij :=
`ik
`kj
· `jl
`li
.

With this wonderful observation, we are now ready to state the final theorem of this section.

Theorem 4.9. Two discrete metrics ` and ˜̀are conformally equivalent if and only if they induce the
same cross ratios. That is to say that for all i, j,

cij = c̃ij.

What exactly this theorem means is captured really well in the following picture14:

13Most notably, this definition behaves well under Möbius transformations.
14Image from [CWW+18]
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At last! We have reached a definition that allows us to take sections of our simplicial complex and
conformally map it into a disk! This means that the useful theorem that we had for smooth manifolds
that said we could conformally map surfaces to disks will still hold in the discrete case. But what are
these things good for anyway? Do not worry, we wouldn’t have made such a big fuss over these things if
they were completely useless. Actually, the fact that we can even do this in general has been one of the
more important discoveries in the past several years for the world of DDG and geometry processing. As
we will see in the next section, these conformal maps and their inverses are needed to apply textures and
shaders to di�erent 3D models. We will also get to see how p-forms play a role in determining how the
eye perceives 3D models after they have been rendered.
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5. Applications of DDG to Surface Textures and Lighting

It’s time for all of our hard work to pay o�! At this point we can finally start talking about all of the
fun things that we’ve been teasing until now, and we will finally see how, exactly, all of this math makes
our favorite movies and games look fantastic. For this section, we are actually going to go in the reverse
order of what we have been doing so far and talk about the ways that conformal maps are used in 3D
textures before we move on to see how our fundamental forms can be used to help us bring light to these
textures and objects.

- Surface Textures in Movies and Video Games - nothing

I suppose it’s best to start o� with talking about what a surface texture is. I like to think of textures like
wall papers or paints that can be put on the surface of objects in order to make them look a certain way.
For example, we could make flat plane look like a hard-wood floor, a pyramid look like crumbling stone,
or, my personal favorite,

a hairy ball1. We need to draw a bit of an important distinction here. While surface textures may look like
they add depth to a surface by giving it creases and ridges, they actually don’t do any of this. Remember:
textures are just like paint. This may not be very convincing from looking at just one image, so let’s look
at one more example. consider the following brick wall:

1There is actually a really fun theorem in algebraic topology called the Hairy Ball theorem. It’s worth a look-up if you have
some time.
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This thing looks pretty normal as far as brick walls go, and you would be forgiven for thinking that every
bit of this was was modeled (think sculpted out of clay, but on a computer) and colored to be made to
look real. You would be wrong, though. In actuality what has happened is that a basic box shape has
had the image of a brick wall painted onto it and then some clever shading has been applied to make
the wall appear to have depth. This is much easier to see from a di�erent angle.

This is an image of the very same wall we saw before, but the angle has been adjusted to look along the
wall. In this way we can see that the wall is, in fact, still completely flat.

The fact that we can manipulate images like this probably isn’t too surprising. In fact, anyone that is
even remotely familiar with art has probably seen some variation of this trick before. However, I bring it
up here because this trick is essential for both 3D artists and render engine programmers to understand
because it allows for a substantial amount of simplification when it comes time to generate 3D images.

So how does this all relate to our conformal maps? Well, as we just discussed, all the information for
a texture can be stored in a 2-dimensional image. And what do conformal maps do? They take 2D
images and map them onto the surfaces of 3-dimensional objects! So, if we consider a 2D texture like
the following checker pattern

then this pattern is applied to a surface using a conformal parameterization which produces something
like
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Or, if we want to use our brick texture again, we can make

And that’s pretty much it for how textures work. It seems kinda lack-luster to have taken over 30 pages
to build up to this moment only to have the payo� last less than 3 pages. I would argue, however, that
this is part of the beauty of the math we have worked through this far. Mathematicians are lazy by
nature, so whenever we manage to find some theorem or some formula that minimizes the work that we
do later, we call that theorem or formula beautiful. And that is exactly what has happened here, but if
you still have a bit of a mathematical itch to scratch, then the next two sections should prove satisfying.
Other than that, here are a couple of images that highlight the use of surface textures to replicate skin,
metals, and organic materials2:

2Images from Hellblade: Senua’s Sacrifice, MAWI United, and Horizon: Zero Dawn
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- Lights, Camera, p-forms! - nothing

We now know how 3D renderers place materials on meshes to make cool things like brick walls, but we
still have no idea how we are even able to see these wonders in the first place. But, before we get into
how the computer is able to illuminate environments built in 3-dimensional space, we should first go
over how the computer knows what it sees in a given environment.

When we study the way that light works in the real world, we tend to think of it in the form of rays.
Specifically, we think of it as starting at some source and then emanating out and bouncing o� objects.
When we look at a given object, some of the rays are then projected onto an image plane in the back of
our eye (the retina), which our brain interprets to tell us what we see.3.

This model does not work well, however, for when we want to calculate what a camera sees in a 3D
model. Why? Because there are a lot of wasted rays that don’t hit anything that the camera can see. That
means that a lot of processing power and RAM would be wasted on things that would ultimately be
considered useless. There is an easy fix for this, though; instead of considering the light rays as starting

3Image from http://slideplayer.com/slide/7537260/
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at the source and making their way to our eye/camera, we can think of the light rays as starting at the
camera, passing through an image plane, and making their way back to the given source.

4By thinking of light in this way, we ensure that every ray contains valuable information about what
the camera can actually see. We are then able to control the definition of the image rather easily by
modifying the number of rays that the camera emits.

With a basic understanding of how ray tracing works under our belt, we can now start in on how these
things weave together to illuminate a scene5. We’ll start with how the computer actually deals with the
light rays emitted by the camera. When a computer goes to trace a light ray starting at the camera, the
ray is parameterized as a line. The line is then shot through the scene and the computer records the first
time instance when the light intersects a model in space. This first point of intersection will actually be
the only point along the given line which the computer will see, and, therefore, will be the only point
along the line that is taken into account when the scene is rendered.

Once the primary points of interaction have been handled, the graphics renderer will then proceed to
track the way that the light ray reflected o� of the given point interacts with the remainder of the scene
and store the resulting information until the intensity of the light reaches below some threshold (usually
light is given a quadratic intensity dropo�). The sum of all this data together with information provided
by shaders, materials, and bump/displacement maps6 is put together in the following equation called the
rendering equation, which is used to determine radiance L at a given point x̂ by taking a surface integral
over a hemisphere Ωx̂ centered at that point

L(x̂, ω) = Le(x̂, ω) +

∫
Ωx̂

L(h(x̂, ω′),−ω′)fr(−ω′, x̂, ω) cos(θ′)dω′.

This equation looks ugly, but I promise that it’s actually super pretty as far as spectrograph equations
go, and there is an accompanying picture on the next page. In this equation, the point ŷ = h(x̂, ω′)
is the first point hit in the scene when shooting a ray from x̂ in the direction ω′, and is mainly what
determines a point’s visibility in a scene; Le(x̂, ω) is the emitted spectral radiance (how bright the point
is); and fr is the bidirectional reflectance distribution function (a.k.a. the BRDF which determines how

4Image from https://en.wikipedia.org/wiki/Ray_tracing_(graphics)#/media/File:Ray_trace_
diagram.svg

5For those of you that are somewhat familiar with the basics of 3D animation already, I will not be discussing what vertex,
pixel, geometry, and tessellation shaders are and the role that they play in determining how things are rendered. For those
that don’t know what these are, feel free to look them up, but I caution that making sense of what’s really going on will
require some basic background in computer science and will likely involve looking into what the render pipeline is.

6Note: Bump maps and displacement maps are actually two di�erent things, but they serve essentially the same purpose.
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lights bounce o� of opaque surfaces). This last equation is, in turn, given by

fr(−ω′, x̂, ω) =
1

π

(
F (λ, θ′ = 0) +

F (λ, θ′)D(θh)G(θh, β, θ, θ
′)

cos(θ) cos(θ′)

)
where F (λ, θ′) is the Fresnel function (which describes the reflection and refraction of light),D(θh) is
the microfacets distribution function (which describes the statistical distribution of surface normals),
and G(θh, β, θ, θ

′) is the geometrical attenuation factor (which describes how a light dims as it moves
through a medium). The rest of the constants in the rendering equation should be discernible from the
image7.

Now, I have mentioned two things so far that I have yet to show. Firstly, I claimed that there were dif-
ferential forms in here somewhere, and secondly, I claimed that these equations were pretty. Hopefully,
after all that we’ve been through in this paper, it’s fairly easy to see that we have just taken an integral
which involves a di�erential form. Actually, the rendering equation is an integral defined over a man-
ifold with boundary, so you can bet that when we are actually computing this thing we use Grandpa
Stokes’ theorem. That takes care of the p-forms, but why is this fugly8 rendering equation actually
pretty? Well, it’s because all the subequations that the exact form of the rendering equation rely on are
actually really well-behaved in the sense that it’s easy to estimate them. So even if we want to render
something that has a lot of reflections in it like9

our computers won’t crash during the rendering process. Does it still take a lot of time? Yes, but at the
very least it’s doable.

7Image from [DGP05]
8Not a typo.
9Image from https://courses.cs.washington.edu/courses/cse557/08wi/projects/trace/
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6. Conclusion

I suppose that was the last bit of what I wanted to talk about. We’ve gone through a lot in this paper.
From vectors, to derivatives, to di�erential forms, to conformal maps, we have seen them all and, hope-
fully, developed some good intuition for them. More importantly, I hope that this paper has provided a
satisfactory reason for appreciating math outside of its standard applications within STEM disciplines,
and, maybe, convinced a few people that had thought they were done with math to take another look at
it. I’m not going to get my hopes up, but it’s a nice thought to have. At the very least, I know that if you
made it this far that you found this paper mildly interesting, and so I say to you thank you for reading.
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