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To my mother






Preface

This book is intended to be a self-contained. introduction to all the set
theory needed by most mathematicians. It is self-contained in the sense
that no prior knowledge of set theory is logically assumed; but the reader
should have a working ability in the elements of the subject—the topics
covered in Chap. 1. The usual elementary definitions and facts about
sets, relations, functions, unions, and so on, are covered in Chap. 1. In
Chap. 2 ordinal numbers are studied; the main topics are definitions by
transfinite recursions and the rudiments of ordinal arithmetic. Chapter
3 is devoted to a brief study of the axiom of choice; several equivalent
forms of this axiom are given, and some mathematical applications are
discussed. The heart of the book is Chap. 4, on cardinal numbers.
Besides elementary facts about addition, multiplication, and exponenti-
ation of cardinals, some more advanced cardinal arithmetic is discussed;
in particular, regular and singular cardinals are treated at some length.

The topics covered, although by no means exhausting abstract set
theory, should suffice for the purposes of most working mathematicians.
For more exhaustive treatments, see Bachmann 1967 or Sierpinski 19568
(see the Bibliography at the end of the book). Suggestions for further
reading are given from time to time for those interested more deeply in
set theory. Some sections of the book may be omitted without loss of
continuity, since they cover specialized topics. This applies to Secs. 15,
23, and 24. The exercises, although not prerequisite for any textual
material, are strongly advised in order to obtain a working knowledge
of the material; there are not many and they are reasonably easy, so
that the reader can try to work them all.

The approach to set theory here is axiomatic. Since set theory
should form the logical basis for all mathematics, it seems clear to the
author that in set theory, more than anywhere else in mathematics, one
should strive for rigor. This accounts for the somewhat formal cast of
this book. However, the author has strived not to be too pedantic.
Logical symbolism is used, but only where it is essential, or where it
seems to clarify a situation. Set theory should be based on formal logic,
but here it is based on intuitive logic. Intuitive logic is expounded in
the Introduction. For the purist who wants all the rigor attainable by
present-day standards, the Appendix develops formal logic and indicates
how to fit the set-theoretical development of the text into the formal
framework of logic. Unlike almost all books at this level, we state all
the set-theoretical axioms at the beginning, in Sec. 1. Hopefully this
gives more clarity to the development than stringing the axioms through-
out the book.

Precisely speaking, the axiomatic approach used is that of Kelley

vii
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and Morse, expounded in the appendix of IKelley 1955. It seems to the
author that the Kelley, Morse system, or the closely related system of
Godel 1940, is used more often than any others by working mathe-
maticians when any question of the foundation of set theory arises. It
has the advantage of minimizing the necessary discussion of the symbol-
ism of set theory. The axiom of choice is used freely in the book when-
ever it is needed or whenever its use shortens an exposition. We do,
however, give many informal comments on important cases in which its
use 1s essential or inessential, but no effort is made to indicate all cases
where it may be eliminated. Transfinite recursion 1s used to establish
some equivalents to the axiom of choice, shortening the usual proofs
appreciably. Metamathematical results concerning the axioms are
stated informally at various places in the book, but especially at the end
of Sec. 1.

The book developed from several courses given by the author, and
first thanks go to the students in those courses. I am also very much
indebted to Stephen Comer, Gebhard Fuhrken, James S. Johnson, and
Jack L. Hursch, Jr., for valuable comments on various versions of the
book. In addition I also wish to express thanks to Mrs. Mae Jean
Ruehlman for her expert typing. Although the material of the bookis
well known, I hope that the influence of my teacher, Alfred Tarski, is
evident in its presentation here.

J. Donald Monk



Contents

Preface

Introduction : Intuitive logic

1. Elementary set theory

1 The axioms
2 Boolean algebra of classes
3 Algebra of relations
4 Tunctions
5 Infinite Boolean operations
6 Direct products, power classes
7 Equivalence relations
8 Ordering
2. Ordinals
9 Ordinals: basic properties
10 Transfinite induction
11 The natural numbers
12 Sequences and normal funections
13 Recursion
14 Ordinal arithmetic
15 Special topics

3. The axiom of choice

16

Equivalents of the axiom of choice

17 Applications of the axiom of choice

4. Cardinals

18
19
20
21
22
23
24

Cardinals: basic definitions
Finite and infinite sets
Cardinal addition

Cardinal multiplication
Cardinal exponentiation
Regular and singular cardinals
Applications

Appendix: Aziomatic logic
Axioms of set theory
Bibliography

Index of notations

Subject Index

vii

12

13
24
32
40
49
55
57
61

68

68
75
78
81
86
97
105

116

116
122

129

129
134
137
141
150
155
163

168
180
181
185
189






Introduction to Set Theory






INTRODUCTION
Intuitive Logic

Before beginning the development of set theory itself, we want to clarify
on an Intuitive basis some words of common usage that are of a purely
logical nature and are necessary in the development. Examples of such
words are “‘and,” “not,” “there exists,” and “equals.” We should indi-
cate why we feel that it is necessary to do this. In almost all fields of
mathematics we proceed from the mathematics previously developed.
Set theory, however, is intended to be at the verv foundations of mathe-
matics; aside from assuming a habituation with abstraction, it does not
depend on any prior knowledge of mathematics. It does assume a sub-
stratum of ordinary logic common to a large number of people, not all
of whom are mathematicians. Not much reflection is required to con-
vince oneself that this substratum is not universal and not without its
controversial points. Hence the purpose of this introduction: to try in a
nonrigorous way to affix precise meanings to common logical usage. To
do this in a rigorous way would require a formal, rigorous development
of logic itself, prior to a discussion of set theory. Such a development

1



2 INTRODUCTION INTUITIVE LOGIC

is given in the Appendix. Thus, by starting with the Appendix and then
proceeding to Chap. 1, the reader can see a development of set theory that
meets all modern standards of rigor. To a great extent, however, com-
mon sense subsumes logie, and its rigorous development is inappropriate
to a book on set theory. We also sympathize with those who are impa~
tient with any sign of pedanticism and wish to get right to the heart of
the matter; for them, even the present introduction may be skipped (but
see the Index of Notation at the end of the book).

Logic (technically, first-order logic) has two main parts, sentential
logic and quantifier logic. The first is easier to explain and grasp than
the second, so that we consider it first. In sentential logic we are con-
cerned with sentences, their truth or falsity, and ways of combining or
connecting sentences to produce new ones. A sentence is an expression
about which it is reasonable to assert its truth or falsity. This ‘““defini-
tion’’ looks all right but on closer analysis it not very good; in Chap. 1
and in the Appendix a better definition is given, restricted to a well-
defined artificial language but correspondingly further from the intuition
and to this extent unsuitable. Let us take some examples. ‘2 4 2 = 4"
is a sentence, in fact a true sentence. ‘‘r 1s rational” is a false sentence;
but it is not a task of logic to decide whether or not ‘‘r is rational” is true
or false. “There are infinitely many pairs of prime numbers p, ¢ such
that ¢ = p + 2 is a sentence (the twin-prime conjecture), but it is
unknown at this time whether 1t is true or false. Now consider the
expression

(1) The set of all sets not members of themselves is a member
of itself.

Offhand, it seems quite reasonable to consider this expression a sentence.
But if it is true, then so is the sentence

(2) The set of all sets not members of themselves is not a member
of itself,

which expresses the opposite of (1); and if (2) is true, then so is its oppo-
site (1). Thus it turns out not to be reasonable to assert the truth or
falsity of (1); by our definition (1) is not to be considered a sentence.
Clearly there may be cases in which it is very difficult under our definition
to determine whether or not a given expression is a sentence. Thisis a
major defect of the definition.

The paradoxical nature of the inference from (1) to (2) and from (2)
to (1) is known as Russell’s paradox. Because of its set-theoretical form
it has played a large role in the historical development of set theory. In
fact, it is mainly because of this paradox that it will be necessary in
Chap. 1 to redefine ‘‘sentence” in order not to set up an obviously con-
tradictory system.
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At least there are some expressions, like the first three of the above
examples, which are incontrovertibly sentences under our definition. So
let us proceed to a description of some purely logical ways of connecting
sentences so as to form new ones. The most useful connectives are the
following.

OR

Writing “or’’ between two sentences, we form a sentence which is true
if at least one of the two sentences is true and false if both are false. This
usage deviates somewhat from the ordinary use of “or.”” We do not
mean “‘either . . . or . . . ,” but “either . . . or . . . or both.” Fur-
thermore, by our agreement the truth or falsity of the component sen-
tences is all that matters in determining the truth or falsity of the com-
pound sentence; there does not have to be any connection between the
components. For example, the following sentences must be taken as
true, odd as they may look:

1 > 0 or 7 is not a real number.
4% = 16 or there is an z such that z? = —1.

1
[0 sin  dz = 7 or /2 is irrational.
2 =2o0r2 2

Of course if both components are false, the compound sentence is false,
for example:

2= 2o0r2 = 2
4% = 15 or 7 is rational.

We use the abbreviation V for “or.”

In order to prove a sentence of the form ¢ V ¢, where ¢ and ¢ are
component sentences, we may assume that ¢ is false and give an argumerip
that ¢ 1s true. For if ¢ is true, then ¢ V ¢ 1s true, and if ¢ is false, the
argument shows that ¢ is true and hence ¢ V ¢ is true. Symmetrically
we may assume that ¢ is false and prove that ¢ is true.

Example If p is a prime and p divides a'b, then p divides @ or p divides b. To
prove this, first assume that p i1s a prime and p divides ab. Further,
assume that p does not divide a. Then (p,a) = 1, so that there exist integers
s and ¢t such that 1 = sp + ta. [Here we use (p,a) for the greatest common
divisor of p and a.] Multiplying by b, we get b = spb + tab. Now p divides
spb and p divides tab, so that p divides b. The proof is complete.

AND

Writing “and” between two sentences makes a new sentence that is true
if both sentences are true and is false otherwise. Only the truth values
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matter, nothing else. Thus
1>0and2+2 =14
is true, but the following sentences are all false:

0 > 1 and +/3 is irrational.
12 = —1 and = is rational.
0 > 1 and +/3 is rational.

We use the abbreviation A for “and.”

IMPLIES

A sentence ¢ implies a sentence y if either ¢ is false or ¢ is true. Thus,
again, we are interested only in truth values. In mathematics this use
of the word “implies” has become more or less standard, although outside
of mathematics other meanings are probably more prevalent. The main
difference occurs in sentences like

2 + 2 = 5 implies 7 is rational,
or
2 + 2 = 5 implies 7 is irrational.

Both of these are true under our specification, since in both cases the
sentence to the left of “implies,” namely, “2 4+ 2 = 5,” isfalse. Insuch
cases we say that the implication holds vacuously.

Some further examples of our use of “implies’” are

12 = —1 implies 2 = 2. true
12 = —1 implies 2 = 3. false
22 = 0 1mplies 2 = 2. true
12 = 0 implies 2 = 3 true
We use = as an abbreviation for “implies.” In a sentence ¢ = ¢ we

call ¢ the hypothesis of the implication and ¢ the conclusion. In order
to prove a sentence of the form ¢ = ¢, we frequently take ¢ as an addi-
tional assumption (along with whatever other mathematical assumptions
we are using at the time), argue awhile, come up with the conclusion ¥,
and then ‘“discharge’” the assumption ¢, that is, state that ¢ = ¢ has
been praved, from which point we no longer have ¢ as an assumption.

Example a > 0 implies that a has a square root. To prove this, assume that
a > 0. Let b be the largest real number such that 52 < a. By a supplemen-
tary argument, it is seen that b2 = qa; that is, a has a square root. Thus we
have shown that a > 0 implies that a has a square root.
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NOT

This “connective’”’ converts one sentence into another, namely, a true
sentence into a false one and a false one into a true one. Thus “every
positive integer is a sum of four squares’ is true, and so ‘not (every posi-
tive integer is a sum of four squares)” is false, and ‘“‘not (not (every posi-
tive integer 1s a sum of four squares))’ is true. In these examples we
transgress the common rules of grammar, but the meaning should be
clear. In order to simplify the rules for combining sentences, it is fre-
quently desirable to abuse grammar in this way, and this practice is con-
tinued throughout the book.

We use 71 to abbreviate ‘“‘not’’; the sentence Tl¢ is called the
negatton of o.

Arguments involving “not” are frequently of an indirect nature,
in which we do not go directly from assumptions to a conclusion but infer
that the assumptions imply the conclusion by means of a logical trick.
We now describe two important kinds of indirect arguments.

CONTRAPOSITION

If we want to prove a sentence of the form ¢ = ¢, we may, instead of the
direct method described above in the discussion of “implies,”” prove the
sentence 1y = T1¢. Forif we have done this and if ¢ is true, then Tl¢
is false, and hence, 1¥ = TT¢ being true, it cannot be the case that 71y
is true; that is, ¢ is true. The sentence Ty = T1¢ is called the contra-
posttwe of the sentence ¢ = .

Example Let I be the ring of integers, and for any n in I, n > 1, let (n) be the
principal ideal generated by n. For any a in I, let [a] be the equivalence class
of a with respect to the ideal (n). Then I ~(n) is an integral domain implies
n is a prime. To prove this, assume that n is not a prime. Then there exist
a, b in I such that 0 <a <n, 0 <b <n, and n = a-b. Thus [a] = 0, [b]
s 0, but [a]-[b] = 0. Hence I ~(n) is not an integral domain. Therefore,
I /(n) is an integral domain implies n is a prime.

REDUCTIO AD ABSURDUM, OR ARGUMENT BY CONTRADICTION

To prove a sentence ¢, it is enough to assume ¢ and then prove some
statement 7Ty, where ¢ 1s known to be true, which amounts to proving a
contradiction ¢ A T1¢. For then the argument shows that ¢ could not
be false after all.

Example If A is a set of positive integers such that 1 isin A, and z + 1 isin 4
whenever x is in A, then every positive integer is in A. To prove this state-
ment, we assume that every nonempty set of positive integers has a least
element. To argue by contradiction, we assume that there is a positive integer
not in A. Then the set B of all positive integers not in A has a least element
m. Because 1 isin 4, we have m > 1. But then m — 1 is a positive integer,
so that, by the minimality property of m, m — 1isin A. But by the assump-
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tion on A4, this implies that m = (m — 1) 4~ 1isin A. Having already noted
that m is not in A, this is a contradiction. Hence, after all, every positive
integer is in A.

iF AND ONLY IF

We say that a sentence of the form “¢if and only if ¢’ is true only in case
both ¢ and ¢ are true, or both ¢ and ¢ are false. Thus the following two
sentences are true:

1 > 0 if and only if #2 < 20.
1 = 0 if and only if #2 < 0.

On the other hand, these sentences are false:

32 4+ 42 = 5?2 if and only if = is rational.
42 4 52 = 62 if and only if = is irrational.

We use the symbol iff or < in place of “if and only if.”” To prove
a statement ¢ < ¢, we usually prove ¢ = ¢ and then prove ¢ = ». For,
having done this, the first proof excludes the possibility that ¢ is true
and ¢ false, and the second excludes the possibility that ¢ is true and ¢
false. Hence either both are true or both are false; that is, ¢ & ¢ is true.

Example [ ~(n) is an integral domain iff n is a prime. For, as in the example
abovein the discussion of contraposition, we have (I /(n) an integral domain) =
(n is a prime). Second, suppose that n is a prime. If [k)-{I] = 0, then n
divides k-1 and hence n divides either k or I, from which it follows that (k] = 0
or (] = 0. Thus7 ~(n)isanintegral domain. Hence (n1sa prime) = (I (n)
is an integral domain), and the proof is complete.

Another method for proving ¢ < ¢ is to prove that ¢ = ¢ and
Tl = T1y; this amounts to the same method just described, because
Tl = 71y yields ¥ = ¢, by contraposition.

These five connectives—*‘‘or,” “and,” “implies,” “not,” and “if and
only if”’—are sufficient to express conveniently any sentential combina-
tions that we consider in this book. The rules for the truth values of
compound sentences formed by using these connectives, which we again
emphasize depend only on the truth value of the components, are sum-
marized in the following tables:

@ e ® ¥ eVyY o AY o2y ooy
True  False True  True True True True True
False True True False True TFalse TFalse False

False True True False True False
False Talse False False True True
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There are many English phrases that we consider synonomous with these
five connectives, and there are certain grammatical variations of the con-
nection process that are applied. Thus “¢ is necessary for ¢’ is con-
sidered synonymous with ¢ = ¢; ‘¢ is sufficient for ¢’ is synonymous
with ¢ = ¢; “¢ is necessary and sufficient for ¢’ means ¢ & ¢; “o Is
equivalent to ¢’ means ¢ = ; “o If ¥’ means ¢ = ¢; “‘p only if ¢
means ¢ = ¢; ‘o whenever '’ means ¢ = ¢; “if ¢ then ¢’ means ¢ = ¢;
“ojustin case¢’’ means ¢ < . Thereare, of course, many other phrases
that may be used in place of the five we singled out. Furthermore, we
may, for the sake of grammatical usage, modify the formal use of the
connectives. For example, it is nicer to write

m 1s not a rational number
than to write
not (r is a rational number)

However, as we indicated in the discussion of “not’ above, we write
ungrammatical sentences where this would seem to aid clarity.

To conclude the discussion of sentential logic, we mention that there
are some sentences that are true on logical grounds only. Rather than
trying to explain what we mean by this assertion, we give a number of
examples. The following sentences are true no matter what truth values
the component sentences ¢, ¥, x have:

eV Tle. law of excluded middle
T(e A o).
(e=¢) = (= Tlo).
T AY) = (e V 74’)-}
Te V) e (Te A TIY).
e VAN VE)A(eVl
e A W Velle Ad) V(e A X

We now turn to the discussion of quantifier logic, which revolves
around the phrases “‘there is”’ and “for every.” In mathematics these
phrases are almost universally used in conjunction with variables. A
variable 1s simply a letter of our alphabet (or perhaps of some other
alphabet, like the Greek or German alphabet) used together with these
phrases. Let us first consider the phrase ‘“for every,” which is called
the universal quantifier. As an example, consider the sentence

De Morgan’s laws

} distributive laws

(3) Foreveryz,z <Oorz=00r0 <z

All the occurrences of z in this sentence are bound up with the phrase
“for every.” Every variable has a range of values, which in this case
consists of (say) all integers. Having asserted the sentence (3), we may
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on purely logical grounds, also assert the sentence obtained from that
following the comma in (3) by replacing all three occurrences of z by the
name of some integer. Thus the following sentences follow logically
from (3):

—5<0 or —5=0 or 0< —5.
0<0 or 0=0 or 0<O.
1 <0 or 1=0 or 0<1.

As another example take the sentence
(4) For every positive real number a, a has a square root.

Here the range of values of a consists of all positive real numbers. As
special cases of assertion (4) we have

1 has a square root.
7 has a square root.
/2 has a square root.

Analogously with the case of sentential connectives there are other phrases
that in mathematics are taken to be synonymous with “for every,” for
example, the phrases ‘“for any,” “for all,” and “for each.” We also
allow grammatical variations in the process of applying “for every.”
Thus instead of (4) we might write

Every positive real number has a square root,

in which the variable is understood but not used.

Thus a variable has no meaning standing alone, but only in con-
nection with the phrases “for every’” or ‘‘there is,”” or synonymous
phrases. In mathematics constants are also used profusely. A constant
is simply a proper name of some kind. We may distinguish between
permanent and temporary constants. An example of a permanent con-
stant is w, which is used throughout this book to denote the set of all non-
negative integers. Other examples are r, 0, /2. Temporary constants
are constants used only for a short discussion, asin the proof of a theorem.
Frequently the same letters are used for temporary constants in one place
as for variables in a different context.

We use the abbreviation V for “for every.” To illustrate the use
of variables and constants, consider the task of proving a sentence of the
form Vze(z), where ¢(z) is some expression; we write ¢(z) to emphasize
that this expression is likely to involve z, although it is not necessary
that it do so. If the range of z is a set X, we frequently prove Vzo(z) by
taking an arbitrary element a in X (thus using a as a temporary constant)
and then proving (a). Nothing is wrong with saying “Let 2 be an
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arbitrary element of X’’ and then proving ¢(x), thus using z in place of a
as a temporary constant. The two uses of z, as a variable in Vze(z),
and as a constant in the argument, should be kept distinct.

Example For every rational number z, z? = 2. To prove this, let a be an arbitrary
rational number, say a = r s, where (r,s) = 1. [Again we use (r,s) for the
greatest common divisor of r and s.] Suppose, to argue by contradiction,
that a? = 2. Thus r2 = 2s2. Let r = 2%’ with (2,r') = 1 and let s = 2ug’
with (2,s") = 1. Then we easily infer that 2¢{ = 2u + 1, which is impossible.
Hence a? 5= 2 after all. Because a is arbitrary we have shown that for every
rational number z, 2% = 2.

As in the case of implications, a sentence of the form Vzep(z) may
be true vacuously. This is the case with the sentence

Every rational square root of 2 is negative,

which may be reformulated as ‘“Vz(z is a rational square root of 2 =z
< 0)"; the hypothesis of the implication is false, and hence the implica-
tion 1tself is true, for any possible value of z.

In stating theorems or axioms, frequently the universal quantifier
is omitted but is understood to be present. Thus in writing

r+y=y—+z

as a theorem, the sentence
Ve Vy@z+y =y + )

is understood.

Now let us discuss the existential quantifier ‘“‘there is,”’ for which we
use H as an abbreviation. Synonymous phrases or grammatical variants
are ‘“‘there are,”” ‘‘there exist,”” “there exists,” “for some.”” We use the
existential quantifier in the sense ‘‘there is at least one.” In order to
prove a sentence of the form Hze(x), one usually constructs, in some sense,
an object a such that ¢(a). It is possible, however to give a noncon-
structive proof of such a sentence, say by assuming 1Hze(z) and deriv-
ing a contradiction. We give an example of each procedure.

Example There is an z such that 23 — 722 4 11z — 5 = 0. Indeed, 5% — 7-52 +
11:5 — 5 =125 — 175 + 55 — 5 = 0. Thus we may take z = 5.

Example KEvery nonempty set of positive integers has a least element {we assume
the complete induction principle for positive integers); compare with the
example illustrating argument by contradiction, page 5. Let A be a non-
empty set of positive integers. To argue by contradiction, suppose that A
does not have a least element. Let B be the set of all positive integers not in
A. Then 1isin B, for if 1 were in A, it would be the least element of 4. If
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Vz(z < y = z in B), then y is in B, for if y were in A, it would be the least
element of A, Hence, by the principle of complete induction, every positive
integer is in B, and so A is empty, which contradicts the assumption above.
Hence, after all, A has a least element that is, Hz(z 1s in A and z < y for all
yin 4).

In arguments where a sentence of the form Hze(z) occurs as an
assumption, one frequently introduces a temporary constant, like a, with
the added assumption that ¢(a) holds. After drawing a conclusion that
a sentence Y, not involving a, then holds, one may logically drop the
added assumption ¢(a) and state that ¢ has been derived from the original
assumptions [which, as we said, include Hze(z)]. In introducing the
assumption ¢(a), we may use terminology such as ‘‘choose a such that
o(a)”’ or “let a be such that ¢(a).”

Example Let G be a group with identity e. Suppose that H is a nonempty subset
of G such that z-y~!isin H for all z, y in H. Then eis in H. To prove this,
we assume that Hz(z is in H), and we choose ¢ in H. Then, by the assumption
of the theorem, q-a~!'is in H. But a-a™! = ¢, so that e is in H.

Having the quantifiers available, we can add to the list of sentences
that are true on logical grounds only. All these sentences are valid no
matter what the expressions ¢(z), ¥(z), x(z,y) are:

Vzp(z) = Hze(z).

Hx Vyx(z,y) = Vy Hax(z,y)-

Vzlp(x) A ¥(z)] & Vae(z) A Vay(z).
Hafo(z) V ¢ (2)] & Tze(z) V Hay(z).
Vze(r) & T1Hz Te().

Hze(z) & T1V2 Te(x).

AVze(zr) & Hr Te(z).

TJHze(x) & Va Te(z).

Note, with regard to the first of these sentences, that a variable is always
assumed to have a nonempty range of values. Hence if the sentence
Vze(z) holds, then for a particular element a of the range of values of z,
e{a) holds, and hence Hzo(z) holds.

We conclude this introduction with a brief mention of one last
logical notion, that of equality. The sentence a = b expresses the
assertion that a denotes the same thing as b. From this “‘definition”
we see that equality possesses the following properties:

Q

= a.

=b=b = a.
a=bAb=c=a=c

Equals may be substituted for equals.

Q
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Some authors assume only these properties of equality (that is, that = is
merely a relation, between possibly distinct objects, satisfying these
conditions), but our ‘“‘definition’” seems intuitively more satisfactory.

Remark We wish to reemphasize that the treatment of logic in this
introduction has not been rigorous. For the purposes of exposition we
have been more dogmatic than is justifiable. For good elementary
treatments of logic, in which the pitfalls of the intuitive notions are con-
trasted to the rigorous approach, see Tarski 1965 and Mates 1965.% As
previously mentioned, a rigorous development of logic can be found in
the Appendix. A more advanced treatment of logicisfound in Mendelson
1964.

All these treatments have to do with classical two-valued logic.
The reader should be aware that, even with regard to basic logical facts,
there are some alternative approaches. For example, the logical truth
¢ V Tl¢ has been questioned as a reasonable principle to use in mathe-
matics; the intustiontsm of Brouwer holds this and other similar principles
in doubt, basically because in intuitionism constructions and not proofs
are taken as fundamental. For an account of intuitionism see Heyting
1966. Many-valued logic is discussed on a technical level in Rosser,
Turquette 1952.

1 See the Bibliography at the end of the book.



1
Elementary Set Theory

In this chapter we give the axioms for set theory and develop its most
elementary part. Our treatment is definitely not exhaustive; only the
facts commonly used by working mathematicians are given, and most of
these facts are so simple that in later chapters of this book we generally
will use them without reference to this chapter.

We will prove only representative parts of the results we state; the
reader should check for himself the validity of the other parts.

Since the discovery of various paradoxes at the turn of this century
it has been recognized that some kind of axiomatic approach to set theory
is necessary. Russell’'s paradox—the set of all sets not members of them-
selves both is and is not a member of itself—shows that we cannot define
sets precisely as we wish. Another famous paradox in set theory is that
of Burali-Forti: The set 4 of all ordinal numbers is a well-ordered set,
whose order type should be an ordinal number, hence a member of 4;
but then the order type of 4 is smaller than the order type of 4. Other
paradoxes are easily derived, using irrefutable set-theoretical arguments,
from the assumptions that the set of all sets exists; the set of all cardinal

12
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numbers exists; the set of all supersets of a given set exists, etc. All of
these paradoxes have a common feature: the existence is asserted of sets
that are very ‘‘big.”” To precisely proscribe consideration of such “big”
sets seems to require the formation of an axiomatic system.

Zermelo first gave a workable set of axioms for the theory of sets,
and Fraenkel added a further axiom (the axiom of substitution) which
made the axioms strong enough for almost all mathematical purposes.
The system was simplified by Skolem, and variations were made by von
Neumann, Bernays, Godel, and A. P. Morse, leading to the system
developed in this book.

1 THE AXIOMS

In this section we give all the axioms. Defined notions are introduced
only to the extent that axioms may be conveniently formulated; in later
sections these and other defined notions are discussed fully. Although
the presentation of all of the axioms at once may make the whole subject
seems rather formidable, after working with the notions in the succeeding
sections we hope that they will seem natural.

In any axiomatic development one starts from undefined notions
and axioms, although they may not be so called and the development
may be within the scope of a larger development. Geometry is fre-
quently developed explicitly in terms of undefined notions and axioms.
However, group theory, for example, is usually developed within a larger
framework, in which there are sets, functions, ete., but it may still be
considered an axiomatic development, with the group elements and group
operations as undefined notions, and as axioms the usual group axioms.
In set theory we take the explicit approach: Set theory is not a part of a
larger development, although it is based upon elementary logic.

In addition to undefined notions and axioms, it is convenient and,
as a practical matter, essential to introduce various definitions in develop-
ing set theory. In definitions we introduce new symbols that can in
principle always be eliminated in favor of the undefined symbols (see
the Appendix).

We begin by giving the undefined notions.

Definition 1.1 The primitive notions are those of a class and of member-
ship. Capital italic letters A, B, . . ., X, Y, Z stand for classes. The
membership relation is denoted by e and may or may not hold between two
classes. ¢ stands for the negation of the membership relation; thus A ¢ B
means 1(A € B).

As synonymous with the word “class” we will take “collection,” “family”’
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(especially when thinking of a class of classes rather than a class of
objects), “aggregate,’’ but not “set,” for which we reserve a special mean-
ing described in Definition 1.3. A € B is read “A ¢s a member of B” or
“A 7s an element of B,”’ but not “A contained in B” (see Definition 1.10).
Since we always assume that variables range over some nonvoid range,
we also tacitly assume that classes exist.

Axiom 1.2 (Extenstonality axtom) VAVB[VC(CeA=C(CeB)= A = B].

This axiom expresses the assertion that two classes with the same mem-
bers are equal. The classes A and B may be defined in entirely different
ways, for example,

A = set of all nonnegative integers,
B = set of all integers that can be written as a sum of four squares,

but if they have the same members, they are the same class (in this
example A = B by a well-known theorem of Lagrange). Note that the
axiom of extensionality implies that there is at most one class with no
elements. Since we are going to allow variables to range over classes
only, we thus rule out of consideration ‘“‘objects” or “Urelemente.”” The
reasons for doing this are that it is sufficient in mathematics to consider
everything a class and that it complicates the development considerably
to admit objects (see Suppes 1960). The members of classes must also,
then, be classes; the members of the members are classes, and so forth.

Examining Russell’s paradox, we see that the class considered there,
the class of all classes not members of themselves, is very big. The
standard way of getting around this paradox in axiomatic set theory is
to refuse to admit big classes, or at least not to allow big classes the same
privileges as small ones. In many developments of set theory, for exam-
ple Halmos 1960, the first alternative is followed. Big classes are not
admitted. We elect the second alternative, which is more often used in
research articles in mathematics, and we will distinguish between two
kinds of classes. We define a set as a little class and a proper class as a
big class.

Definition 1.3 A s a sef «ff there ts a B such that A e B. A 1is a proper
class ¢ff A vs not a set. Lowercase italic letters a, b, ¢, . . . , z, y, z are
used for sets unless otherwise stated.

Thus a set is a class small enough to be a member of some other class.
Proper classes are too big for this. Directly from Definition 1.3 we have
the following.
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Corollary 1.4 HB(a e B).

Note that here we tacitly assume a universal quantifier Va. Corollary
1.4 is read “for every set a, there is a class B such that a ¢ B” (see the
Introduction).

As a consequence of the axiom of extensionality we have the
following.

Corollary 1.5 Vz(ze A o zeB)=A = B.

Proof Assume Vz(zeA = zeB). Let C be an arbitrary class. If
CeA, then C is a set, and hence by the assumption, C e B. Similarly
CeB= CeA. Since C is arbitrary, it follows that VC(C e A & C ¢ B).
Thus by the axiom of extensionality, A = B.

We now wish to describe an axiom that allows us to define a class
of objects having a specified property. We wish to exclude Russell’s
paradox and thus the class of all X such that X ¢ X. There is a natural
way to make such an exclusion: We have defined a set as a class capable
of membership in another class, and we admit only classes whose mem-
bers are already known to be sets. Thus we may consider the class A
of all sets X such that X ¢ X. Then the argument giving Russell’s
paradox yields only ““A is a proper class” (see the argument following Eq.
(1) below), which is certainly not a contradiction.

To give the axiom in a rigorous form, we have to define what we
mean by “specified property’’; we prefer the terminology “set-theoretical
formula.”

Definition 1.6 The expressions

A=A A=B A=C,..., B=A4, B
= 4,

are all set-theoretical formulas, as are

AeA, AeB, AeC,. .., BeA, BeB, BeC, <
CeA, CeB, CeC,

If ¢ and ¥ are set-theoretical formulas, so are 1o, (¢ V ¥), (¢ A ¥),
(=), (¢ ), HAp, By, . . ., VA, VBy, . . . . Set-theoretical
formulas can only be obtained by (finitely many) applications of the processes
Just mentioned.

The following, then, are examples of set-theoretical formulas:

TXeX
HX (X eV A X e2)
XX e Y ANHYY eZ
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Note that the first part of 1.6 can be stated more concisely asfollows:
if @ and B are capital Roman letters, then o = 8 and « € 8 are set-theoreti-
cal formulas. Note that some expressions we have already used are not
set-theoretical formulas; for example,

ValdB(a ¢ B) Corollary 1.4

is not, because the lowercase italic letter a occurs in it. However, 1.4
is equivalent, on the basis of Definition 1.3, to

VA[IC(A ¢ C) = AB(4 ¢ B)),

which is a set-theoretical formula. In fact this is a fundamental prop-
erty of definitions already mentioned: Defined expressions can always be
eliminated in favor of primitive ones (see the Appendix). We will fre-
quently make tacit use of this obvious property of definitions, and we will,
treat Va HB(a e B), for example, as a set-theoretical formula. We also
use various signs of aggregation freely in order to prevent ambiguity,
although Definition 1.6 allows their use in restricted cases only.

Axioms 1.7 (Class-building axzioms) If ¢(X) s a set-theoretical formula
not tnvolving the letter A, then the following is an axiom:

HAVX[Xed = Xisaset N o(X)].
Similarly, if ¢(X) does not tnvolve B, then the following s an axiom:
HBVX[XeBe Xisaset A\ o(X)],

and so on for other letters. Letters other than X may also be used.

Here are some examples of class-building axioms. Letting ¢(X) be the
expression 1(X e X), we get, as an axiom,

(1) HJAVX[Xed = Xisaset A T (X e X)].

Thus the class asserted to exist in Eq. (1) is the class of all sets not mem-
bers of themselves. Let us try to reproduce Russell’s paradox. If
AeA, then A is a set and 4 ¢ A. Therefore 4 ¢ A. Hence 4 is not a
set, or 4 ¢ A. Knowing that 4 ¢ A, we conclude that 4 isnot a set. No
contradiction is involved. Next let ¢(X) be the expression X = X.
Then an axiom under 1.7 is

HBVX(XeBe Xisaset A X = X),
a logical consequence of which is

HBVX(X eB < X isa set).
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Thus B is the class of all sets. With o(X) = T1(X = X) we get
HAVX[Xed & Xisaset and T(X = X)],

and hence 4 has no elements. With ¢(X) = X eAd V X ¢ B we get
HCVX[XeCe Xisasetand (X eAd VvV X eB)],

so that C is the union of the classes A and B.
The class asserted to exist in 1.7 1s unique:

Corollary 1.8 If o(x) is a set-theoretical formula not tnvolving either of the
letters A or Band if VX(X e A = Xisaset A (X)) and VX(X eBe= X
1sa set A\ ¢(X)), then A = B. Sumilarly for formulas not involving either
A or C, B or D, eic.

Proof Under the assumptions of the theorem it follows on purely logical
grounds that VX(X e A & X ¢ B). Hence A = B by the extensionality
axiom.

Definition 1.9 For any sel-theoretical formula o(X) not involving A, let
{X : o(X)} betheunique class A suchthat VX(X e A = X 1sa set A\ ¢(X)).
Stmalarly if o(X) does not tnvolve B, C, and so on. This definition s
justified by Corollary 1.8. Again, letters other than X may be used, and even
lowercase letters (see 1.3).

The symbolism introduced in Definition 1.9 is very convenient in prac-
tice. Wemayread {X : ¢(X)} as “the class of all sets X such that ¢(X).”
The classes given in the examples following 1.7 are, in this notation,

(X :X¢X)}, (X:X=X}, [X:X=X}, {X:XeAV XeB].

The entire force of the class-building axioms is embodied in this sym-
bolism. In what follows, the class-building axioms will always be used
simply by defining classes equal to {X : ¢(X)} for some ¢(X). Further-
more, it will not be necessary to discuss set-theoretical formulas generally
any more, and we will use -only concrete formulas like those in the
examples above.

Definition 1.10 A C B & V(C(CeA=CeB). AC B s read “A is
included in B or ‘A is contained in B”; C 1s called inclusion. We say
that A 1s a subclass of B and B s a superclass of A; if A 1s a set, A is a
subset of B; if B is a set, B is a superset of A.

The reader is warned that many people use A C B where we use 4 C B.
Our usage seems more in line with traditional symbols indicating order,






