
PDIAG – A Package for Drawing Permutation

Diagrams in LATEX

Jason B. Hill

February 15, 2009

Instructions: Please try to compile this code on your machine after saving
this file and the pdiag.sty file to the same directory. Then, send me the
resulting dvi/pdf. Thanks!

This isn’t perfect yet, but it’s getting better. Instead of using xypic to create
permutation diagrams (not possible when live-TEXing), I wrote this small pack-
age to draw the diagrams from a code that can be written quickly. It has a few
drawbacks right now.

• A significant benefit is that this package allows the user to modify the
curves between points greatly. The curves are defined via a sequence of
bezier lines, which are part of the standard LATEX picture environment
and hence themselves require no additional packages. However, LATEX is
incapable of doing floating point arithmetic to calculate the defining points
of these beziers. The xypic package gets around this by doing all calcu-
lations via Postscript. Instead, I have loaded the fp package (standard in
most LATEX installations) to compute floating point operations directly. If
your diagrams get large, this will require some processor time.

• If one is drawing a large diagram, there may be many vertices that are
not permuted at any given step. No time should be wasted in entering
the null mapping information for these vertices. This package is designed
to draw the remaining lines that are not explicitly mapped. At present,
the structure of the code means that this is limited to approximately 12
vertices. Long story. This problem can be fixed, but it will require some
additional coding and I just don’t have time right now. For now, 12
vertices will have to be enough.

• I’ve written code to label maps (rows), but have not yet written the code
to label vertices.

1

Examples:

A simple example:

\[
\begin{pdiag}{3}{1}
\pdiagmap{1}{3}
\pdiagmap{3}{1}
\pdiagendmap
\end{pdiag}
\]

d

d

d

d

d

d

t

d

t

d

d

d
The pdiag environment takes 2 arguments: the number of vertices and the
number of rows in the diagram. In the above example, there are 3 vertices and
1 row. The pdiagmap command takes 2 arguments: domain and image. In the
first instance of pdiagmap above, the vertex 1 is sent to 3. Notice that only
the vertices that are permuted under the map are filled (the rest are empty
dots). You can change this by filling all dots in the diagram as follows: Place
the command \pdiagfill anywhere within the environment.

\[
\begin{pdiag}{3}{1}
\pdiagfill
\pdiagmap{1}{3}
\pdiagmap{3}{1}
\pdiagendmap
\end{pdiag}
\]

d

d

d

d

d

d

t

t

t

t

t

t

t

d

t

d

d

d
One may also scale the diagram with the optional [x] argument added to the
pdiag environment. The default scale is 1. So, we have the two examples:

2

\[
\begin{pdiag}[0.5]{3}{1}
\pdiagfill
\pdiagmap{1}{3}
\pdiagmap{3}{1}
\pdiagendmap
\end{pdiag}
\]

b
b

b
b

b
b

r
r

r
r

r
r
r

b
r

b
b
b

\[
\begin{pdiag}[1.5]{3}{1}
\pdiagfill
\pdiagmap{1}{3}
\pdiagmap{3}{1}
\pdiagendmap
\end{pdiag}
\]

g

g

g

g

g

g

w

w

w

w

w

w

w

g

w

g

g

g
Beziers can be turned into straight lines by using the optional [0] argument
inside the pdiagmap command as follows:

\[
\begin{pdiag}{3}{1}
\pdiagfill
\pdiagmap{1}{3}
\pdiagmap[0]{3}{1}
\pdiagendmap
\end{pdiag}
\]

d

d

d

d

d

d

t

t

t

t

t

t

t

d

t

d

d

d
3

Beziers can be moved with a high degree of customization. To do so, initiate
the command pdiagbump before the pdiagmap command. This command takes
two arguments: the first controls the bezier as it enters the domain vertex, the
second controls the bezier as it enters the image vertex. The domain and image
correspond to the numbers -1 and 1, respectively. To push one side of the bezier
towards the domain, set the corresponding argument closer to -1. To fix the
situation above with the overlapping intersections of lines, we could use any of
the following:

\[
\begin{pdiag}{3}{1}
\pdiagfill
\pdiagbump{-0.5}{-0.5}\pdiagmap{1}{3}
\pdiagmap[0]{3}{1}
\pdiagendmap
\end{pdiag}
\]

d

d

d

d

d

d

t

t

t

t

t

t

t

d

t

d

d

d
\[
\begin{pdiag}{3}{1}
\pdiagfill
\pdiagbump{0.5}{0.5}\pdiagmap{1}{3}
\pdiagmap[0]{3}{1}
\pdiagendmap
\end{pdiag}
\]

d

d

d

d

d

d

t

t

t

t

t

t

t

d

t

d

d

d

4

\[
\begin{pdiag}{3}{1}
\pdiagfill
\pdiagbump{0.8}{-1.8}\pdiagmap{1}{3}
\pdiagmap[0]{3}{1}
\pdiagendmap
\end{pdiag}
\]

d

d

d

d

d

d

t

t

t

t

t

t

t

d

t

d

d

d
Notice that the values passed to the pdiagbump command do not need to stay
within the range of -1 to 1. In fact, the bezier can be forced outside of the
diagram as shown here:

\[
\begin{pdiag}{3}{1}
\pdiagfill
\pdiagbump{0.2}{-3}\pdiagmap{1}{3}
\pdiagmap[0]{3}{1}
\pdiagendmap
\end{pdiag}
\]

d

d

d

d

d

d

t

t

t

t

t

t

t

d

t

d

d

d

5

A larger example with labels for the rows (maps) is as follows. Notice that the
pdiagendmap command finishes the current row (map), draws the remaining
lines in the diagram and then moves to the next row.

\[
\begin{pdiag}[1.5]{8}{3}
\pdiagmap{2}{6}
\pdiagmap{3}{8}
\pdiagbump{-0.7}{-0.5}\pdiagmap{6}{3}
\pdiagbump{0.9}{0.4}\pdiagmap{8}{2}
\pdiagname{α}\pdiagendmap
\pdiagmap{1}{2}
\pdiagmap{2}{5}
\pdiagbump{-0.6}{-0.3}\pdiagmap{5}{3}
\pdiagmap{3}{1}
\pdiagname{β}\pdiagendmap
\pdiagmap{4}{5}
\pdiagmap{5}{3}
\pdiagmap{3}{4}
\pdiagmap{8}{6}
\pdiagmap{7}{8}
\pdiagmap{6}{7}
\pdiagname{N}\pdiagendmap
\end{pdiag}
\]

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

s
c

s
c

s
c

s
c

α

c
c

c
c

c
c

c
cs

c
s

c
s

c
s

c
β

c
c

c
c

c
c

c
cs

c
s

c
s

c
s

c
s

c
s

c
N

c
c

c
c

6

This environment can be placed anywhere where an array may be placed.

\[
\sum_{i=1}^n\left\{\hspace{-1pc}
\begin{pdiag}{2}{1}
\pdiagendmap
\end{pdiag}\hspace{-1pc}\cdots\hspace{-1pc}
\begin{pdiag}{2}{1}
\pdiagfill
\pdiagmap[0]{1}{2}
\pdiagmap[0]{2}{1}
\end{pdiag}\hspace{-1pc}\cdots\hspace{-1pc}
\begin{pdiag}{2}{1}
\pdiagendmap
\end{pdiag}\hspace{-1pc}
\right\}
\]

n∑
i=1

{ b
b

b
b

b
b

b
b · · ·

b
b

b
b

r
r

r
r
r

b
r

b · · ·

b
b

b
b

b
b

b
b

}

7

