CU Boulder

Math 2130

Test 1

Section 002 (Instructor Farid Aliniaeifard)

Friday, Oct 6, 2017, 10:00 - 10:40 am

NAME (print):			
	(Family)	(Given)	
SIGNATURE:			
STUDENT NUMBER:			

Instructions:

- 1. Time allowed: 40 minutes.
- 2. NO CALCULATORS OR OTHER AIDS
- 3. There are 5 questions on 5 pages. Last page is blank.
- 4. Questions can be solved in more than one way.
- 5. You are expected to write clearly and carefully.

Question	Points	Marks
1	5	
2	5	
3	5	
4	5	
5	5	
Total	25	

1. (5 points) Let

Is the system consistent? if so write the solution set.

- 2. (5 points) For each of the following give the definition.
 - (a) Linear independent set of vectors.
 - (b) Span of a set of vectors
 - (c) Basis for a subspace.

- 3. (5 points)
 - (a) Show that

$$T(x_1, x_2, x_3) = (3x_2 - x_1, 2x_1 + x_3)$$

is a linear transformation.

- (b) Find the standard matrix for T.
- (c) Is T onto?
- (d) Is T one-to-one?

4. (5 points) Let

$$v_1 = \begin{bmatrix} 1\\0\\3 \end{bmatrix}, v_2 = \begin{bmatrix} -1\\1\\-1 \end{bmatrix}, v_3 = \begin{bmatrix} -1\\2\\1 \end{bmatrix}$$

- (a) Is $\{v_1, v_2, v_3\}$ linearly independent?
- (b) Find a basis β for $Span\{v_1, v_2, v_3\}$.

(c) Is
$$b = \begin{bmatrix} 1\\ 1\\ 5 \end{bmatrix}$$
 in V? if so write $[b]_{\beta}$.

- 5. (5 points) Mark each statement True or False. Justify only one of them.
 - (a) The dimension of the null space of A is the same as the number of free variables in equation Ax = 0.
 - (b) The matrix $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is not invertible if ab = cd.
 - (c) A linear transformation is onto if the standard matrix of T has pivot position in each column.

First Midterm