CALCULUS 3 October 13, 2010 2nd TEST

YOUR NAME:

002 J. HARPER(9AM)	\bigcirc 005 A. Spina(12pm)
003 C. Mesa(10am)	006 M. Stackpole (1pm)
004 A. Spina(11am)	\bigcirc 007 P. Newberry(3pm)

SHOW ALL YOUR WORK

final answers without any supporting work will receive no credit even if they are right! No calculators allowed.

No cheat-sheets allowed.

Partial credit will be given for any **reasonable amount of work pointing in the right direction** towards the solution of your problem. You will not get any partial credit for memorizing formulas and not knowing how to use them, or for anything you write that is not directly related to the solution of your problem.

If your tests contains **more than one solution or answer** to a problem or part of a problem, and one of them is wrong, then it will be **the wrong one** the one that **counts** for your grading!

problem	points	score
1	15 pts	
2	15 pts	
3	15 pts	
4	15 pts	
5	15 pts	
6	10 pts	
7	15 pts	
TOTAL	100 pts	

1. **[15 pts]** Let $\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$ be the position vector of the point (x, y, z). Show that, if a is a constant,

grad
$$(\|\vec{r}\|^a) = a \|\vec{r}\|^{a-2} \vec{r}, \qquad \vec{r} \neq \vec{0}.$$

2. **[15 pts]** Approximate π using

$$\pi = f(C, r) = \frac{C}{2r} \,,$$

where the circumference of the circle C and the radius r are given by

 $C=60\pm 6\,\mathrm{cm}\,,\qquad\mathrm{and}\qquad r=10\pm 1\,\mathrm{cm}\,.$

Estimate the maximum error in your approximation.

3. **[15 pts]** Given z = f(x, y), x = x(u, v), y = y(u, v) and x(1, 2) = 5, y(1, 2) = 3, calculate z_u at (u, v) = (1, 2) in terms of some of the numbers p, m, c, t, a, k, h, q, where

$$\begin{aligned} f_x(1,2) &= p \,, \quad f_y(1,2) = c \,, \quad x_u(1,2) = a \,, \quad y_u(1,2) = h \,, \\ f_x(5,3) &= m \,, \quad f_y(5,3) = t \,, \quad x_v(1,2) = k \,, \quad y_v(1,2) = q \,. \end{aligned}$$

4. **[15 pts]** The equation F(x, y, z) = k defines z implicitly as a function of x and y. Find z_x and z_y in terms of F_x , F_y and F_z .

5. **[15 pts]** The surface S is represented by the equation w = 0, where $w = F(x, y, z) = x^2 - \frac{y}{z^2}$. Find an equation for the tangent plane to S at the point (1, 1, 1).

6. [10 pts] Compute the critical points of $f(x,y) = 2x^2 - 3xy + 8y^2 + x - y$ and classify them.

7. **[15 pts]** Use the method of Lagrange multipliers to find the maximum and minimum values of $f(x, y) = x^3 - y^2$ subject to the constraint $g(x, y) = x^2 + y^2 = 1$.