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Abstract. For a metric space (A, d), and a set Σ of equations, some quantities
are introduced that measure the size of discontinuities that must occur in opera-
tions satisfying Σ (identically) on A. We are able to evaluate these quantities in a
few easy cases.
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0 Introduction.

This paper is part of a continuing investigation—see the author’s papers [32]
(1986), [34] (2000), and [35] (2006)—into the compatibility relation (see (2)
below) between a topological space A and a set Σ of equations, which we will
briefly review in §0.1.

The main results so far are Theorems 4, 5, 6, 7 and 28, in §2.3, §2.4,
§2.5, §2.6 and §3.8. They showcase a new quantity that measures the in-
compatibility—see §0.1—of a metric space A with an equational theory Σ.
This quantity will be denoted µ(A,Σ)—see §0.3. In the first four of the
aforementioned theorems we are able to calculate some non-trivial µ-values,
with A = S1, the one-dimensional sphere, and Σ taken, for example, as
the well-known ternary majority laws. Then Theorem 28 deals with lattice
theory on a Y -shaped space. It invokes some more sophisticated measures,
µn and µ?

n, which measures jumps in n-fold iterates of the operations.
These calculations indicate the feasibility of studying this µ, and show

that the quantity may have some independent interest. At the same time,
we seek a broader applicability of the concept and associated methods. Thus
we will for a while keep the project open, both for the ultimate form of this
paper, and for future writings.

At the start of §0.3 we contrast this µ with an earlier measure [36] of
incompatibility known as λ.
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0.1 Compatibility—context and background.

In this context, Σ typically denotes a set (finite or infinite) of equations1,
which are understood as universally quantified. We usually expect that Σ
has a specified similarity type. This means that we are given a set T and
whole numbers nt ≥ 0 (t ∈ T ), that for each t ∈ T there is an operation
symbol2 Ft of arity n(t), and that the operation symbols of Σ are included
among these Ft.

Given a set A and for each t ∈ T a function Ft :An(t) −→ A (called an
operation), we say that the operations Ft satisfy Σ and write

(A,F t)t∈T |= Σ, (1)

if for each equation σ ≈ τ in Σ, both σ and τ evaluate to the same function
when the operations Ft are substituted for the symbols Ft appearing in σ
and τ . Given a topological space A and a set of equations Σ, we write

A |= Σ, (2)

and say that A and Σ are compatible, iff there exist continuous operations Ft

on A satisfying Σ.
While the definitions are simple, the relation (2) remains mysterious.

The algebraic topologists long knew that the n-dimensional sphere Sn is
compatible with H-space theory (x · e ≈ x ≈ e ·x) if and only if n = 1, 3 or
7. For A = R, the relation (2) is algorithmically undecidable for Σ [35]; i.e.
there is no algorithm that inputs an arbitrary finite Σ and outputs the truth
value of (2) for A = R. In any case, (2) appears to hold only sporadically,
and with no readily discernable pattern.

The mathematical literature contains many scattered examples of the
truth or falsity of specific instances of (2). The author’s earlier papers [32],
[34], [35], [36] collectively refer to most of what is known, and in fact many
of the earlier examples are recapitulated throughout the long article [36]. We
will therefore not attempt to write a list of examples for this introduction.

1A (formal) equation is an ordered pair of terms (σ, τ), more frequently written σ ≈ τ .
As such it makes no assertion, but merely presents two terms for consideration. The actual
mathematical assertion is made by the satisfaction relation |=.

2In examples we may sometimes give the operation symbols familiar names like + or
∧, or use F , G, etc. without a subscript. All of these variations may be thought of as
colloquial expressions for the more formal Ft.
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0.2 Metric approximation to compatibility.

If the topological space A is metrizable, and if a metric d is selected for A,
then in addition to the modeling relation |=, one may also study some real-
valued measures of approximate satisfaction. In our previous paper [36] we
wrote

A |=ε Σ (3)

(for real ε > 0) to mean that there exist continuous operations F t on A such
that, for each equation σ ≈ τ in Σ, the terms σ and τ evaluate to functions
σ and τ that are within ε of each other. We then defined λA(Σ) to be the
smallest non-negative3 real such that A |=ε Σ for every ε > λA(Σ).

As one might imagine, the precise value of λA(Σ) depends strongly on
the metric d chosen to represent the topology of A; moreover, its value
can increase if Σ is augmented by the inclusion of some of its own logical
consequences. The earlier article [36] illustrates these points with detailed
estimations of λA(Σ) for many different A and Σ.

0.3 Measuring continuity-failure in models of Σ.

In looking to have A |= Σ for a space A and a set Σ of equations, we
demand both the continuity of the operations F t of (A,F t)t∈T , and the exact
satisfaction of Σ by these operation. The outlook reviewed in §0.2 was to
relax the need for exact satisfaction, and to see how close we can come with
approximate satisfaction.

In this paper we examine a different—opposite, really—way of relaxing
our requirements. Namely, we require exact satisfaction while measuring how
far our operations must deviate from continuity.

Let B be a topological space, and (A, d) a metric space. Let us consider a
function F :B −→ A. If F is continuous at b ∈ B, then for each ε > 0 there
is a neighborhood U of b with F [U ] ⊆ B(F (b), ε/2) (the open ball about
F (b) with radius ε/2). Consequently, if F is continuous at b ∈ B, then for
each ε > 0 there is a neighborhood U of b such that F [U ] has diameter < ε,
in other words

inf { diameterF [U ] : U open, b ∈ U } = 0. (4)

3If there is any real number satisfying this condition, then there is a smallest one, by
completeness. If there is no such real number, then we let λA(Σ) = ∞.
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If F is not continuous at b we may still define the quantity

χ(F , b) = inf { diameterF [U ] : U open, b ∈ U }, (5)

which we will call the jump of F at b, as a real number (or ∞), and take this
quantity as a measure of failure of continuity at b. The following lemma is
almost immediate.

Lemma 1 F :B −→ A is continuous at b ∈ B iff χ(F , b) = 0.

Proof. We already saw that if F is continuous at b, then χ(F , b) = 0. For
the converse, let us be given χ(F , b) = 0 and prove continuity at b. Suppose
we are given ε > 0. The infimum appearing in (4) and (5) is zero, which
means in particular that there is an open U ⊆ B with b ∈ U and such that
F [U ] has diameter < ε. In other words, d(f(u), f(b)) < ε for all u ∈ U . Thus
F is continuous at b.

Then χ(F ), the jump of F is defined to be the supremum of χ(F , b), for b
ranging over B. (This supremum is either a non-negative real number or ∞.
Its value obviously depends on the choice of metric on A.) Clearly χ(F ) = 0
if and only if F is continuous.

It will be of interest to have an analog of χ(F , b) for uniform continuity.
If F :B −→ A is uniformly continuous, then for each real ε > 0 there exists
real δ > 0 such that if U is any δ-ball in B, then F [U ] has diameter ≤ ε. We
define

χu(F ) = inf
δ>0

sup
b∈B

diameter F [Bδ(b)], (6)

where the subscript u stands for “uniform,” and where Bδ(b) stands for the
δ-ball in B centered at b. This quantity may be called the uniform jump of F
on B. By analogy with Lemma 1, we have that F is uniformly continuous on
B iff χu(F ) = 0 (formal statement and proof omitted). The following lemma
is a slight extension of the well-known equivalence, for compact spaces, of
continuity with uniform continuity. (It may also be well known.)

Lemma 2 χ(F ) ≤ χu(F ), with equality holding for compact spaces.
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Proof. Removing the b-supremum from (6) we immediately have, for each
b ∈ B,

χu(F ) ≥ inf
δ>0

diameter F [Bδ(b)]

= inf { diameterF [U ] : U open, b ∈ U } = χ(F , b).

It follows immediately that

χu(F ) ≥ sup
b∈B

χ(F , b) = χ(F ).

We now consider the opposite inequality χu(F ) ≤ χ(F ) = supb∈B χ(F , b).
If the supremum on the right is infinite, the result is immediate. So we will
assume that it is finite. Let us consider arbitrary real K > supb∈B χ(F , b);
it will suffice to prove that K ≥ χu(F ). We are given that K > χ(F , b) for
every b ∈ B. Thus by the definition (5), for every b ∈ B there exists an open
set Ub with b ∈ U and such that diameter F [Ub] < K.

The sets Ub form an open cover of A; by compactness there is a Lebesgue
number for this covering. In other words, there exists δ > 0 such that each
δ-ball Bδ(b) is a subset of Ub′ for some b′ ∈ B. Therefore diameterF [Bδ(b)]
< K for each b ∈ B. Therefore, for this one value of δ,

sup
b∈B

diameter F [Bδ(b)] ≤ K.

So finally we have

χu(F ) = inf
δ>0

sup
b∈B

diameter F [Bδ(b)] ≤ K,

the desired inequality.

Let (A, d) be a metric space, and A = (A,F t)t∈T an algebra based on A.
We define

χ(A, d) = sup
t∈T

χ(F t).

When the metric d is clear from the context, we may write χ(A) for χ(A, d).
It should be clear that χ(A, d) = 0 if and only if A is a topological algebra.

Finally, for (A, d) a metric space, and Σ a set of equations of similarity
type 〈nt : t ∈ T 〉, we define

µ(A, d,Σ) = inf {χ(A, d) : A = (A,F t)t∈T |= Σ }; (7)
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in other words, it is the infimum taken over all algebras built on A that satisfy
Σ. When the metric d is clear from the context, we may write µ(A,Σ) for
µ(A, d,Σ).

All these notions have uniform versions, denoted with a subscript u, based
on χu in place of χ. Most of this paper deals with compact metric spaces, on
which the two concepts coincide. In some cases (for example see §§2.3–2.5) it
turns out to be easier to prove an estimate for χu than for χ. One should bear
in mind that, even when A has been given a metric, the value of χu(A) still
depends on the metric that is chosen to represent the topology on the finite
powers Ant . By Lemma 2, however, there is no dependence in the compact
case. We will mostly work in the compact case.

In this paper we shall apply (7) only in situations where (i) A is infinite,
(ii) Σ is finite or countable, and (iii) Σ defines a consistent equational theory
(i.e. it has a model of more than one element). In these circumstanes, there
is at least one model of Σ based on A; in other words, the infimum appearing
in (7) is over a non-empty set. If one or more of (i–iii) should fail, then it
is possible for the infimum of (7) to be over the empty set. In that case, we
would naturally define µ(A, d,Σ) to be ∞.

This quantity µ(A, d,Σ) will be the main object of study in this paper.
Like the previously studied λA(Σ)—see §0.2— µ(A, d,Σ) measures deviation
from A |= Σ, as follows: in every model of Σ based on A, some operation has
a discontinuity at least as large as µ(A, d,Σ). (ONLY APPROXIMATELY
TRUE)

It should be apparent that if A |= Σ, then µ(A, d,Σ) = 0. The converse
is false, as we shall see. Under the right circumstances, there are some
connections between the values of λA(Σ) and µ(A,Σ). See e.g. Corollaries 20
and 21 of §3.3.

1 Elementary remarks about µ(A, d,Σ).

I do not yet have a clear idea of the full scope of §1. Maybe it won’t really
be necessary, but for the moment I will file remarks here as I think of them.

1.1 Σ ⊆ Σ′.

It is almost obvious that if Σ ⊆ Σ′ then µ(A, d,Σ) ≤ µ(A, d,Σ′). (This is
simply because, in evaluating the infimum in (7), the set of algebras for Σ′
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is a subset of the set of algebras for Σ.)
It is also immediate from (7) that if Σ′ is any collection of logical con-

sequences of Σ, then µ(A, d,Σ) ≥ µ(A, d,Σ′). Thus, if Σ′ includes all of
Σ together with any subset of the consequences of Σ, then µ(A, d,Σ) =
µ(A, d,Σ′).

It thus follows that, unlike λA(Σ) (see §0.2), µ(A, d,Σ) is a logical invari-
ant of Σ.

1.2 Topological products.

To come.

1.3 Products of theories.

To come.

2 Some sample values of µ(A, d,Σ).

2.1 An injective binary operation: µ(A, d,Σ) = 0.

Consider Σ consisting of the two equations

F0(G(x0, x1)) ≈ x0, F1(G(x0, x1)) ≈ x1. (8)

They imply, among other things, that in any topological model G must be
a one-one continuous binary operation. Euclidean spaces of non-zero finite
dimension do not have such operations, hence are not compatible with Σ. In
§2.1 we will be concerned with A = [0, 1]. Although this A is not compatible
with Σ, we shall show that µ(A, δ,Σ) = 0 (where d is the ordinary Euclidean
metric).

To begin we let P be a continuous function mapping A = [0, 1] onto A2.
(Such an area-filling curves was devised by G. Peano in 1890—see [33, pp.
116–7], or many other sources.) By the Axiom of Choice, P has a (discon-
tinuous) inverse H; in other words we have

A2 H−→ A
P−→ A2

with P ◦H the identity function on A2. Let λ = χ(H). We remarked above
that H cannot be continuous; hence 0 < λ ≤ 1.
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Now to establish our claim that µ(A,Σ) = 0, we must prove that the
infimum appearing in (7) is zero. It will suffice, given ε > 0, to exhibit an
algebra A based on A with χ(A) ≤ ε, and such that A |= Σ.

Our algebra A is as follows. Its binary operation G is defined via

G(a0, a1) = εH(a0, a1).

The unary operations F 0 and F 1 are defined to be the two components of
the function F :A −→ A2 that is defined via

F (a) = P (1 ∧ (a/ε)),

where ∧ denotes the smaller of two real numbers. Clearly F is well-defined
and continuous; hence the same is true of F 0 and F 1.

To verify Σ for the operations, we first calculate

F (G(a0, a1)) = P (1 ∧ [εH(a0, a1)/ε])

= P (1 ∧ [H(a0, a1)]) = P (H(a0, a1)) = (a0, a1),

with the final equation true by our choice of H. We now have F ◦G = 1,
which is tantamount to the equations Σ.

As for χ(A), we first note that χ(G) ≤ ελ ≤ ε. By continuity, χ(F 0) =
χ(F 1) = 0. Thus χ(A) ≤ ε. This completes the description of this example.

2.2 Σ non-Abelian and simple; A = S1

Following [36, §3.2.3], we define a set Σ of equations to be Abelian iff it
is interpretable (in the sense of [14]) in the equational theory of Abelian
groups. Equivalently, Σ is Abelian if and only if it has a model based on Z
with operations of the form

F (x1, · · · , xn) = m1x1 + · · ·+mnxn, (9)

where each mi ∈ Z.
It was proved in Theorem 41 on page 234 of [34] that Σ is Abelian iff

Σ is compatible with S1, and then in §3.2.3 of [36] that Σ is Abelian iff
λS1(Σ) = 0. In fact, if S1 is given its natural metric as a circle embedded in
the Euclidean space R2, scaled to diameter 1, then we have

λS1(Σ) =

{
0 if Σ is Abelian

1 otherwise.
(10)
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The first assertion of (10) obviously holds for µ(S1,Σ)—namely that µ(S1,Σ) =
0 if Σ is Abelian—but the corresponding second assertion is false.

By a simple term in the language defined by the operation symbols Ft of
§0.1, we mean4 a term that contains at most one Ft, and moreover contains at
most one instance of that Ft. In other words, according to the usual recursive
definition of terms, a simple term is either a variable or created at the first
stage beyond the inclusion of variables. An equation σ ≈ τ is simple iff both
σ and τ are simple terms.

We cannot prove anything like (10) for µ in place of λ. However, for
some simple non-Abelian theories Σ, we can prove the surprisingly exact
result that µ(S1,Σ) = 2/3. See §§2.3–2.5.

2.3 Σ = multiplication with zero and one; A = S1.

Throughout §2.3 we let Σ be the theory of a single binary operation with a
zero and a one. (Specifically a left zero and a left one.) Specifically, Σ is
given by these equations:

F (0, x) ≈ 0; F (1, x) ≈ x. (11)

Let us represent the one-sphere S1 as a circle of circumference 2 (hence radius
1/π). We then give it the metric of arc length: d(P,Q) is the length of the
shorter of the two circular arcs joining A and B. In this metric, the space
has diameter 1. By an arc in this space we mean the smaller of two circular
arcs joining two points, considered as a closed subset of S1. We shall prove
that, in this metric, µ(S1,Σ) = 2/3.

Lemma 3 If F is a finite subset of S1 with diameter(F ) < 2/3, then there
is an arc A of S1, of length = diameter(F ), such that F ⊆ A.

Proof. Let λ denote diameter(F ). Choose P,Q ∈ F such that d(P,Q) = λ,
and define A to be the arc PQ. Clearly A has length λ. To prove that F ⊆ A,
we consider three intervals of length λ. The first is A itself; the second is B
which meets A only in the point P ; the third is C which meets A only at
the point Q. Since λ < 2/3, the intervals B and C are disjoint. Now every
member of F is within λ of P , hence belongs either to A or to B. Similarly

4This terminology was used, perhaps for the first time, in Garćıa and Taylor [14], and
then again by Taylor in [35].

10



every member of F belongs either to A or to C. Now suppose that R ∈ F
but 6∈ A. Then R must belong to both B and C, which is a contradiction;
this contradiction completes the proof that F ⊆ A.

Remarks. The proof can easily be extended to infinite F , although we
will not need this refinement. The number 2/3 is sharp for this lemma, as fol-
lows. Consider F whose members are three points equally spaced at distance
2/3 about the circle S1. Clearly no arc contains F , but diameter (F ) = 2/3.

Theorem 4 µ(S1,Σ) = 2/3. (With Σ as defined in (11).)

Proof. Part 1. µ(S1,Σ) ≤ 2/3. We must exhibit an algebra A =
〈S1, F , 0, 1〉 (with F binary) satisfying equations (11), and with χ(F ) ≤ 2/3.
For convenience, let us take R to stand for 1/π, the radius of our circle S1.
We now define the operations of A as follows: 1 = R, 0 = −R, and F is
given by these formulas:

F (R, z) = z; F (−R, z) = −R; (12)

F (w 6= ±R, Reiθ) =


Reiπ/3 if 0 ≤ θ < 2π/3,

−R if 2π/3 ≤ θ < 4π/3,

R e5iπ/3 if 4π/3 ≤ θ < 6π/3.

(13)

The satisfaction of (11) is immediate from (12) of the definition.
To evaluate χ(F ), we first consider χ(F , (w, z)), where w 6= R. It is

obvious from (12–13) that (w, z) has a neighborhood U such that F [U ] ⊆
R{−1, eiπ/3, e5iπ/3}. This latter set has diameter 2/3, and so we may turn
our attention to the case of w = R.

We begin the case of w = R by remarking that F has a 3-fold sym-
metry, as follows: if w 6= −R, then F (w, e2πi/3z) = e2πi/3F (w, z). Since
multiplication by any unimodular complex scalar is a rotation, and does not
change diameters, it will be enough to focus our attention on F (R,Reiθ)
where 0 ≤ θ < 2πi/3. We first assume that θ 6= 0. We may then consider
a neighborhood U0 × U1 of (R,Reiθ), where −R 6∈ U0 , and U1 is a small

arc about Reiθ that lies interior to the arc RRe2πi/3. Then F [U0 × U1] is
U1∪{Reπi/3}. The reader may easily check that this set has diameter < 2/3.

It finally remains to consider w = R and θ = 0, which is to say, to evaluate
χ(F , (R,R)). Things go exactly as before, except that a neighborhood U0×U1
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of (R,R) will contain some points of the form (v,Reiθ) where v 6= ±R and
4π/3 < θ < 2π. Thus F [U0 × U1] will be U1 ∪ {Reπi/3, Re5πi/3}.

Part 2. µ(S1,Σ) ≥ 2/3. For a proof by contradiction, let us assume
that µ(S1,Σ) < 2/3. By (7), there is an algebra A = 〈S1, F , 0, 1〉 such that
χ(F ) < 2/3 and such that A |= Σ. Let us give (S1)2 the sum metric

d((a, b), (c, d)) = d(a, c) + d(b, d). (14)

By Lemma 2, we also have χu(F ) < 2/3. Referring to (6) (the definition
of χu), we see that there exists δ > 0 such that d((a, b), (c, d)) < δ implies
d(F (a, b), F (c, d)) < 2/3. Let

t0, t1, · · · tN−1, tN = t0

be points of S1 such that

(a) The points ti are evenly spaced around the circle, with d(ti, ti+1) < δ/2
for all appropriate i. We will refer to the portion of S1 between ti and
ti+1 as a segment of the circle.

(b) This sequence of points continues around the circle in the same direc-
tion, and goes around the circle exactly once.

(c) For convenience, we make sure that 0 = t0 and 1 = tK for some K.

For the remainder of the proof we consider the restriction of F to the
finite set {(ti, tj) : 0 ≤ i ≤ K, 0 ≤ j < N }. From (a) and (14) and our
choice of δ, we immediately have

diameter {F (ti, tj), F (ti, tj+1), F (ti+1, tj), F (ti+1, tj+1) } < 2/3. (15)

for 0 ≤ i < K, 0 ≤ j < N . We will finish the proof by showing that the
metric arrangement (15) and Equations (11) together lead to a contradiction.

Applying Lemma 3 to (15) we see that for 0 ≤ i < K, 0 ≤ j < N there
is an arc Aij of length < 2/3 such that

F (ti, tj), F (ti, tj+1), F (ti+1, tj), F (ti+1, tj+1) ∈ Aij. (16)

For i = 0, . . . , K, let us take a continuous function γi :S
1 −→ S1, in such

a way that the following five conditions are met:
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(i) γi(tj) = F (ti, tj) and γi(tj+1) = F (ti, tj+1);

(ii) For 0 ≤ i < K, γi maps the arc tjtj+1 into the arc Aij.

(iii) For 0 < i ≤ K, γi maps the arc tjtj+1 into the arc A(i−1)j.

(iv) γ0 is the constantly 0 function.

(v) γK is the identity function.

(Condition (i) can be met directly. For conditions (ii) and (iii), we use (16)
to see that the endpoints tj and tj+1 both map into the arc Aij ∩ A(i−1)j;
hence the arc between them can be mapped into Aij ∩ A(i−1)j (here we use
the fact that a non-empty intersection of two arcs of diameter < 1 is itself an
arc). For condition (iv), we recall that 0 is t0; therefore the equations (11),
together with condition (i), tell us that all the values γ0(tj) are 0. Therefore
we easily satisfy conditions (ii) and (iii) by making γ0 constantly equal to
0—which yields also (iv). Condition (v) is satisfied similarly.)

Now, for a contradiction, we will prove that γ0 is homotopic to γK , in
contradiction to conditions (iv) and (v). Using the transitivity of homotopy,
it will be enough to prove that γi is homotopic to γi+1 for 0 ≤ i < K. So we
fix a value of i in this range, and proceed to define the required homotopy.

For 0 ≤ j < N , we define a continuous S1-valued function Gj, whose
domain is the arc titi+1 and which satisfies

(vi) Gj(ti) = F (ti, tj) and Gj(ti+1) = F (ti+1, tj).

(vii) Gj maps the arc titi+1 into the arc Aij.

(viii) Gj+1 maps the arc titi+1 into the arc Aij.

(Again, these conditions are all possible by (16).)
We now consider the set Bij = titi+1 × tjtj+1 ⊆ S1 × S1. We define a

function φij from the boundary of Bij to the arc Aij, as follows:

φij(s, tj) = Gj(s) (17)

φij(s, tj+1) = Gj+1(s) (18)

φij(ti, t) = γi(t) (19)

φij(ti+1, t) = γi+1(t) (20)
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(The reader may check, from what has come before, that Range (φij) ⊆ Aij,

and that φij is well-defined, and hence continuous, at the corners of Bij.)
Any continuous function from the boundary of a plane disk to the real line

extends to a continuous function defined on the full disk. (This is Tietze’s
Extension Theorem.) Thus there exists a continuous function Φij :Bij −→
Aij that restricts to φij on the boundary.

We will now show that

Φi =
N−1⋃
j=0

Φij

is the desired homotopy between γi and γi+1. Clearly its domain is
⋃N−1

j=0 Bij

= titi+1 × S1, and by (17–18), for each j the component functions φij and

φi(j+1) agree where they overlap. Thus Φi is a continuous function defined

on titi+1 × S1. Finally, from (19–20) it follows that, for all t ∈ S1, we have
Φi(ti, t) = γi(t) and Φi(ti+1, t) = γi+1(t). Thus Φi is the desired homotopy.
As mentioned above, transitivity yields a homotopy between the identity and
a constant function. This contradiction to known results completes the proof
of the theorem.

Remark on the proof. In fact, what we have done here is—for a contradic-
tion—to begin with a solution F to the equations Σ, such that F is discon-
tinuous, but by no more than 2/3. We have then focused on a finite subset
of F (comprising the function-values F (ti, tj)). Finally we have interpolated
a continuous function G through these values that also satisfies Σ. Since no
such G exists, we have our contradiction. In §2.4 and §2.5 we will see this
method to be widely applicable. See also §2.5.1.

2.4 Σ = commutative idempotent binary; A = S1

In §2.4 we consider the following Σ, which defines commutative idempotent
binary operations:

F (x, y) ≈ F (y, x); F (x, x) ≈ x. (21)

In §3.4.1 of [36] we remarked that this Σ is non-Abelian, hence not compatible
with S1. Since it is also simple, its µ-value is amenable to estimation. By a
method similar to that of §2.3 (again using Lemma 3) we will prove
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Theorem 5 µ(S1,Σ) = 2/3. (With Σ as defined in (21).)

Proof.

Part 1. µ(S1,Σ) ≤ 2/3. We must exhibit an algebra A = 〈S1, F 〉 (with
F binary) satisfying equations (21), and with χ(F ) ≤ 2/3. To avoid fractions,
we will represent elements of our circle as real numbers modulo 3, and will
assume that these numbers parametrize the distance. In this reframing, the
circle has diameter 3/2, and so we expect to prove that χ(F ) ≤ 1. We define
the operation F of A as follows:

F (s, t) = F (t, s) =


s ∨ t if 0 ≤ s, t ≤ 1

s ∨ t if 1 ≤ s, t ≤ 3

1 + s + t if 0 ≤ s ≤ 1 and 2 ≤ t ≤ 3

2 + t if 0 ≤ s ≤ 1 and 1 ≤ t ≤ 2,

(22)

where of course the addition is taken modulo 3. It is obvious that this F
satisfies the Σ in (21). In order to estimate χ(F ) we consider the following
diagram:

1 2

0 1

3 3

2 2

3 3

2 3
1 1

0 0

2 2

1 2

2 3

2 3
1 1

0 1

0 1

0 1

1 2

0 1

(23)

This illustration depicts [0, 3]× [0, 3], divided into nine squares of dimen-
sions 1× 1. If we consider the diagram modulo 3 in each direction, then we
have our version of the torus S1 × S1. As the reader may check—case by
case—the four values shown in each small square are the corner F -values for
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that square, as supplied by our definition (22). Moreover, on each small edge,
the F -values (considered not modulo 3, but as reals in [0, 3]) vary linearly
between the indicated corner values.

It is now not hard to observe—again, case by case—that no jump is
greater than 1 in the limit. The most serious case occurs at the upper-
right corner, call it P , of the upper-left small square: the values at P are
0, 1, 2, 3 = 0. Given ε > 0, there is a neighborhood U of P such that
F [U ] ⊆ [−ε, ε] ∪ [1 − ε, 1 + ε] ∪ [2 − ε, 2 + ε]. This last set has diameter
1 + 2ε. Then χ(F , P ) is the relevant infimum, which clearly is 1. We have
now established the required properties of A = 〈S1, F 〉, and hence the proof
of Part 1 is complete.5

Part 2. µ(S1,Σ) ≥ 2/3 For a proof by contradiction, we assume that
µ(S1,Σ) < 2/3. By (7), there is an algebra A = 〈S1, F 〉 such that χ(F ) <
2/3 and such that A |= Σ. As in the proof of Theorem 4, we give (S1)2

the sum metric. As before, there exists δ > 0 such that d((a, b), (c, d)) < δ
implies d(F (a, b), F (c, d)) < 2/3. Let

t0, t1, · · · tN−1, tN = t0

be points of S1 satisfying (a–c) in the proof of Theorem 4. As before, we
have6

diameter {F (ti, tj), F (ti, tj+1), F (ti+1, tj), F (ti+1, tj+1) } < 2/3. (24)

for 0 ≤ i, j < N . The nearness relations (24) will make it possible to define
a continuous binary operation G that interpolates the N2 discrete function
values F (ti, tj) (0 ≤ i, j < N). Using the fact that these values obey (21)
we will be able to make sure that the interpolated operation G also obeys
(21). Thus we will have 〈S1, G〉 |= Σ with G continuous, in contradiction to
the known fact [36, §3.4.1] that S1 6|= Σ; this contradiction will complete the
proof of the theorem.

5Actually, formulas (22) are not especially relevant or important to the proof. The
important thing is the sudoku-like puzzle of finding Diagram (23): the values shown must
illustrate idempotence, commutativity and small jumps. From there one can easily contrive
a function like our F .

6The “+1” appearing in subscripts in (24–25), and elsewhere, is of course to be under-
stood modulo N .
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Applying Lemma 3 to (24) we see that for 0 ≤ i, j < N there is an arc
Aij of length < 2/3 such that

F (ti, tj), F (ti, tj+1), F (ti+1, tj), F (ti+1, tj+1) ∈ Aij. (25)

From (25) we easily derive, for 0 ≤ i, j < N , that

F (ti, tj), F (ti, tj+1) ∈ Aij ∩ A(i−1)j (26)

F (ti, tj), F (ti+1, tj) ∈ Aij ∩ Ai(j−1). (27)

From (25) and Equations (21) we also have

ti ∈ Aij ∩ Ai(j−1) ∩ A(i−1)j ∩ A(i−1)(j−1) (28)

for all i. By symmetry (21), we have F (ti, tj) = F (tj, ti) for all i and j;
hence we may further require that

Aij = Aji (29)

for all appropriate i and j. Moreover, since each Aij is an arc of length ≤ 2/3,
the right-hand sides of (26), (27) and (28) are themselves arcs of S1.

Turning to the definition of G, we begin with what may be called the
coordinate circles, (s, tj) and (ti, t) for s, t ∈ S1 and 0 ≤ i, j < N . From
(26) and (27) it is clear that for these domain values we may now define
a continuous binary operation G satisfying the following conditions for all
s, t ∈ S1 and 0 ≤ i, j < N :

(i) G(ti, tj) = F (ti, tj);

(ii) G(s, tj) ∈ Aij ∩ Ai(j−1) , for s in the arc ti ti+1 ;

(iii) G(ti, t) ∈ Aij ∩ A(i−1)j, for t in the arc tj tj+1 .

By the symmetry that we already have, e.g. (29), we may further require

(iv) G(s, tj) = G(tj, s)

for all appropriate j and s.
For each i, j we have defined G on the boundary of the rectangle ti ti+1×

tj tj+1, which consists of the following four arcs:

{ti}×tj tj+1 , ti ti+1×{tj+1} , {ti+1}×tj tj+1 , ti ti+1×{tj} . (30)
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By (ii) and (iii), our partial operation G maps each of these four arcs into
Aij. In other words G maps the boundary of the rectangle ti ti+1 × tj tj+1

into the topological interval Aij. As is well known, G may be extended to a
continuous function on the entire rectangle:

Gij : ti ti+1 × tj tj+1 −→ Aij.

Let us take such a Gij for every i and j with i ≤ j. Then for i > j we will
define Gij by the formula

Gij(s, t) = Gji(t, s). (31)

It is obvious from (iv) that the Gij defined by (31) also extends our given G
as defined on the boundary of ti ti+1 × tj tj+1.

It should now be clear that
⋃

0≤i,j<N Gij is a continuous binary operation

on S1 that extends our partial operation G. We will denote this full operation
also by G. For (21), we need to check its idempotence and its symmetry. For
this, we need to make two further stipulations in the definition of Gii (for
0 ≤ i < N). Since F satisfies (21), we have F (ti, ti) = ti for all i. By (i) we
have G(ti, ti) = ti for all i. Let us first extend Gii(s, s) to have the value s
for each s ∈ ti ti+1. The diagonal {(s, s) : s ∈ ti ti+1 } divides ti ti+1 × ti ti+1

into two triangles, and Gii has been defined on the boundary of each of these
triangles. Then Gii may be extended to one triangle (as before), and reflected
to the other triangle by the formula Gii(t, s) = Gii(t, s). This completes a
definition of Gii on the full rectangle ti ti+1 × ti ti+1.

It is now obvious thatG satisfies (22) if the variables are assigned values in
any rectangle ti ti+1×ti ti+1. For values outside such a rectangle, idempotence
is moot, and (31) suffices to prove symmetry. We have thus constructed a
continuous commutative idempotent operation on S1, in contradiction to
known results. This contradiction completes the proof of the theorem.

2.5 Σ = ternary majority laws; A = S1

In §2.5 we follow the general path of §2.3 and §2.4, but this time we consider
a non-Abelian simple theory about a ternary operation symbol F . In this
section we let Σ denote the following equations, known sometimes as the
majority equations:

F (x, x, z) ≈ F (x, z, x) ≈ F (z, x, x) ≈ x. (32)
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For the sake of completeness we also consider the symmetric majority equa-
tions:

Σ′ = Σ ∪ {F (x, y, z) ≈ F (x, z, y) ≈ F (y, z, x)}. (33)

Again using Lemma 3, we will prove

Theorem 6 µ(S1,Σ) = µ(S1,Σ′) = 2/3. (With Σ, Σ′ as defined in (32),
(33), resp.)

Sketch of proof. It will of course be enough to prove that 2/3 ≤ µ(S1,Σ) ≤
µ(S1,Σ′) ≤ 2/3.

Part 1. µ(S1,Σ′) ≤ 2/3. We must exhibit an algebra A = 〈S1, F 〉 (with
F ternary) satisfying equations (33), and with χ(F ) ≤ 2/3. For convenience,
as in the proof of Theorem 4, we represent S1 as a circle of radius R =
1/π, with metric determined by arc length around the circle. Thus in this
representation S1 has diameter 1.

On S1 we shall construct a ternary operation F satisfying three properties,
which guarantee (33) and which allow us to make the desired estimate of
χ(F ):

(i) F satisfies F (x, y, z) ≈ F (x, z, y) ≈ F (y, z, x).

(ii) F (a, b, c) ∈ {a, b, c} for all a, b, c.

(iii) If d(a, a′) < 2/3, then F (a, a′, b) ∈ a a′.

Here is the definition of F . Given a, b, c ∈ S1, we examine the three
distances d(a, b), d(b, c) and d(c, a).

Definition of F , clause (1). If all three distances are < 2/3, then
one of these distances is the sum of the other two. For example d(a, c) =
d(a, b) + d(b, c). In that case b is said to be between a and c, and we define
F (a, b, c) to be b. The same formula, mutatis mutandis, yields a (resp. c)
between the other two, in which case F (a, b, c) is a (resp. c).

Definition of F , clause (2). If exactly two of the three distances are
< 2/3, then a, b and cmust be distinct, as the reader may verify. For example
we might have 0 < d(a, b), d(b, c) < 2/3 and d(a, c) > 2/3. In this case, a and
c must lie on opposite sides of b, for otherwise d(a, c) would be too small.
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In this case, we define F (a, b, c) to be b. We extend the definition, mutatis
mutandis, to the other two possible arrangements.

Definition of F , clause (3). If exactly one of the three distances is
< 2/3, say d(a, b) < 2/3, then we define F (a, b, c) to be either a or b, chosen
at random. We extend the definition, mutatis mutandis, to the other two
possible arrangements.

Definition of F , clause (4). Finally, if none of the three distances is
< 2/3, then all three must be equal to 2/3. In this case we let F (a, b, c) be
a or b or c, chosen at random.

We now turn to the verification of (i), (ii) and (iii) for our operation F .
Condition (i) is immediate, since in all cases the definition concerns e.g. a
set of distances; it does matter in which order the three variables enter the
triple (a, b, c). Condition (ii) is immediate from the construction of F .

As for Condition (iii), let us consider the definition of F (a, a′, b), where
d(a, a′) < 2/3. If F (a, a′, b) falls into clause (1) of the definition, then we
may discern two cases: (a) b is between a and a′, and (b) it is not. In case
(a), F (a, a′, b) is b, which lies in the interval a a′. In case (b), F (a, a′, b) is
either a or a′, and both of these lie in the arc a a′.

Verifying Condition (iii) for clause (2) of the definition, if d(a, a′) < 2/3
then we cannot have a and a′ on opposite sides of b (for then all three interals
would be small). Thus either a and b are on opposite sides of a′, or a′ and
b are on opposite sides of a. Thus we have F (a, a′, b) equal to a or a′, and
hence in the arc a a′.

The verification of Condition (iii) for clause (3) of the definition is im-
mediate. Clause (4) cannot occur in the calculation of F (a, a′, b). Hence we
have considered all clauses for the evaluation of F (a, a′, b); hence Condition
(iii) is verified.

Having established conditions (i–iii), we turn now to our previous claim
that these conditions imply the desired properties for F . As for equations
(33), Condition (i) is symmetry itself, and condition (iii) immediately yields
the majority laws (32). All that remains for Part 1 of the proof is to esti-
mate χ(F , (a, b, c)) for (a, b, c) ∈ (S1)3. Our estimate will be based solely on
conditions (i–iii). We consider two possibilities for the triple (a, b, c).

Case 1: d(a, b) = d(b, c) = d(c, a) = 2/3. In this case, {a, b, c} is an
equilateral triangle of diameter 2/3. For a neighborhood of (a, b, c) in (S1)3,
we may consider a set U × V ×W , where U (resp. V , W ) is a neighborhood
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of a (resp. b, c). From Condition (ii), we easily see that

F [U × V ×W ] ⊆ U ∪ V ∪ W.

By making the neighborhoods U , V andW small, we obviously have diameter
F [U × V ×W ] < 2/3 + ε for any ε > 0. Thus χ(F , (a, b, c)) ≤ 2/3.

Case 2: either d(a, b) 6= 2/3 or d(b, c) 6= 2/3 or d(c, a) 6= 2/3. Then
obviously one of these three distances must be < 2/3. Since F is symmetric,
we assume without loss of generality that d(a, b) < 2/3. Choose real δ with
0 < 2δ < (2/3− d(a, b)), and let U (resp. V ) be the δ-ball about a (resp. b)
with radius δ. If u ∈ U and v ∈ V , then d(u, v) < 2/3. Hence, for any w, we
have F (u, v, w) ∈ u v, by (iii). In other words, we have

F [U × V × S1] ⊆ U ∪ V ∪ a b. (34)

This last is a set of diameter d(a, b) + 2δ; by our choice of δ this diameter
< 2/3. In other words, we have now shown that χ(F , (a, b, c)) < 2/3.

Combining Cases 1 and 2, we see that χ(F ) ≤ 2/3, and hence that
µ(S1,Σ) ≤ 2/3. This finishes Part 1 of the proof.

Part 2. µ(S1,Σ) ≥ 2/3. For a proof by contradiction, we assume
that µ(S1,Σ) < 2/3. By (7), there is an algebra A = 〈S1, F 〉 such that
χ(F ) < 2/3 and such that A |= Σ. As in the proof of Theorems 4 and 5,
we give (S1)3 the sum metric (in this case, the sum of distances over three
coordinates). As before, there exists δ > 0 such that d((a, b, c), (d, e, f)) < δ
implies d(F (a, b, c), F (d, e, f)) < 2/3. Let

t0, t1, · · · tN−1, tN = t0

be points of S1 satisfying (a–c) in the proof of Theorem 4. As before, we
have7

diameter {F (tu, tv, tw) : u = i, i+1; v = j, j+1; w = k, k+1} < 2/3. (35)

for 0 ≤ i, j, k < N . The nearness relations (35) will make it possible to define
a continuous ternary operation G that interpolates the N3 discrete function
values F (ti, tj, tk) (0 ≤ i, j, k < N). Using the fact that these values obey
(32) we will be able to make sure that the interpolated operation G also obeys

7The “+1” appearing in (35–36), and elsewhere, is again modulo N .
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(32). Thus we will have 〈S1, G〉 |= Σ with G continuous, in contradiction to
the known fact [31] that S1 6|= Σ; this contradiction will complete the proof
of the theorem.

Applying Lemma 3 to (35) we see that for 0 ≤ i, j, k < N there is an arc
Aijk of length < 2/3 such that

{F (tu, tv, tw) : u = i, i+1, v = j, j+1, w = k, k+1 } ⊆ Aijk. (36)

Now the proof continues much like Part 2 of the proof of Theorem 5;
we omit the details. The function values F (ti, tj, tk) will be interpolated to
a continuous operation G. The interpolation is done first along grid lines
{(ti, tj, u)}, {(ti, t, tk)} and {(s, tj, tk)}, where s, t and u range over S1. It is
then extended to the grid surfaces {(ti, t, u)}, {(s, tj, u)} and {(s, t, tk)}, and
finally to the entire 3-dimensional figure (S1)3. As before, it is carried out
one cell at a time in the given subdivision, and as before (36) ensures that a
continuous extension always exists, one cell at a time.

To accommodate Equations (32) we need first notice, for example, that
G(ti, tj, tj) = F (ti, tj, tj) = tj, and likewiseG(ti, tj+1, tj+1) = F (ti, tj+1, tj+1) =
tj+1. Therefore for t ranging over the arc tj tj+1 it is possible to define G in
such a way that G(ti, t, t) = t, which is a start on proving (32) for G. This
can then be incorporated into the determination of the two-dimensional in-
terpolation G(ti, t, w), by interpolating over two triangles, as we did in the
proof of Theorem 5. At the three-dimensional level we must divide a cube
into two triangular prisms. We omit further details.

2.5.1 Comment on the proofs of Theorems 4–6.

Theorems 4, 5 and 6, in §2.3, §2.4 and §2.5, each conclude that µ(S1,Σ) = 2/3
for a certain theory Σ. The proofs for µ(S1,Σ) ≥ 2/3 are essentially identical:
each involves interpolating a discontinuous operation over a fine grid, and
producing a continuous operation. (The proof of Theorem 4 is not directly
phrased this way, but it could easily be rewritten to this form.) We are
confident that this method would extend to many more simple non-Abelian
theories Σ, perhaps all of them. (Perhaps one would need to invoke [35] to
satisfy Σ continuously at the cellular level.)

This common argument relies essentially on Lemma 3, which allows each
cell to be mapped into an interval, which is topologically very feasible. We
believe it will be possible to find analogs to Lemma 3 for higher dimensions
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(e.g. for Sn); in that case the method may extend to the study of non-Abelian
simple theories on Sn.

On the other hand the three proofs for µ(S1,Σ) ≤ 2/3 seem to have arisen
ad hoc, on a completely case-by-case basis. To remind the reader: each of
these proofs involved the construction of an algebra (S1, F ) satisfying Σ and
with χ(F ) ≤ 2/3. At this time there seems to be little scope for extension of
these methods to another set Σ of equations, or to spaces of higher dimension.

2.6 Σ = commutative idempotent binary; A = S2.

Here we begin to explore whether the method of Theorems §§4–6 will extend
to other spaces. We first note that the two-dimensional sphere S2 is incom-
patible with the spaces that appear in those theorems ([34]; see also [36, §3.2
and §3.2.1]). In fact we will sketch a proof of

Theorem 7 If Σ is the theory either of a binary operation with zero and
one (§2.3), or of a symmetric idempotent operation (§2.4), or of a ternary
majority operation (§2.5), then µ(S2,Σ) ≥ 2/3.

Before sketching the proof, we will state an analog of Lemma 3. In our
previous applications of Lemma 3, the essential part of the conclusion is that
F lies in some convex subset of S1, i.e. an arc. Let us suppose that S2 is
given the great-circle metric, with diameter scaled to 1. For a subset A ⊆ S2,
we say that A is convex iff for each two points P,Q ∈ A, we have d(P,Q) < 1
and P Q ⊆ A.

Lemma 8 If F is a finite subset of S2 with diameter(F ) < 2/3, then there
is a convex subset A of S2 such that F ⊆ A.

The proof of Lemma 8 is like that of Lemma 3, and omitted for now.
Notice again that 2/3 is best possible for this conclusion: three equally spaced
points on a great circle form a set F of diameter 2/3 that does not lie in a
convex set.

We will use two facts about convex subsets: the first is that the intersec-
tion of any family of convex subsets is convex. The second is the property of
being an absolute extensor (AE). A metrizable space A is defined to be an
AE in the family of metrizable spaces iff it satisfies the following property:
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if B is a closed subspace of a metrizable space F , and if g : B −→ A is a
continuous function, then there exists a continuous function φ :F −→ A such
that φ � B = g. (See e.g. [15, pages 34–35].) Each convex subset of S2 is
homeomorphic to a convex subset (in the ordinary sense) of the plane, and
hence is an AE, by [15, pages 84–87]. (See also [6] for the general theory of
AE’s (and absolute retracts).)

Sketch of proof of Theorem 7. We will restrict our attention to the case where
Σ is the theory of a symmetric idempotent operation (§2.4). For a proof by
contradiction, we assume that µ(S1,Σ) < 2/3. By (7), there is an algebra
A = 〈S2, F 〉 such that χ(F ) < 2/3 and such that A |= Σ. As in the proofs
of Theorems 4 and 5, we give (S2)2 the sum metric. As before, there exists
δ > 0 such that d((a, b), (c, d)) < δ implies d(F (a, b), F (c, d)) < 2/3.

Now let us assume that (S2)2 has been triangulated in such a way that
each 4-simplex has diameter < δ. Moreover the triangulation must be sym-
metric in the following sense. Let ι be the involution of (S2)2 given by
ι(a, b) = (b, a), where a, b ∈ S2. Our symmetry condition is that if σ is a
simplex of the triangulation, then so is ι[σ]. Our final condition is that the
diagonal of (S2)2 — namely {(a, a) : a ∈ S2} — must be a subcomplex of
this triangulation. Such a triangulation is clearly possible.

We now proceed to define a continuous binary operation G on S2, which is
symmetric and idempotent. This will contradict the known fact [34, Theorem
1] that no suchG exists; this contradiction will complete the proof of Theorem
7.

We define G on simplices of successively higher dimension. For a 0-
simplex (point) P we simply define G(P ) = F (P ); then obviously G is sym-
metric and idempotent at the level of 0-simplices.

For each 4-simplex σ, Lemma 8 yields a convex subset Aσ of S2 such that
F [σ] ⊆ Aσ. (Here σ denotes the closure of σ, which is σ together with all its
subsimplices.) From the symmetry of F , we may further take the sets Aσ so
that Aι(σ) = Aσ for all σ. We will use the Aσ’s in defining G over simplices
of dimensions 1, 2, 3 and 4. For a simplex τ of any dimension ≤ 4, we define

Aτ =
⋂

{Aσ : dim(σ) = 4; τ ⊆ σ}. (37)

It is not hard to check that Aτ is a nonempty convex subset of S2 such that

F [ρ] ⊆ Aρ; if ρ ≤ τ , then Aρ ⊆ Aτ . (38)
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We will now show inductively that for n = 1, 2, 3, 4, it is possible to define
G on the n-skeleton of our triangulation in such a way that, G[τ ] ⊆ Aτ for
each n-simplex τ . We prove this for n = 3; the other cases are similar. If
τ is a 3-simplex, then G has already been defined on all 2-simplices in the
boundary of τ . For each boundary 2-simplex ρ, we have F [ρ] ⊆ Aρ by (38).
Also by (38), we know that each of the sets Aρ is a subset of Aτ . Therefore
the two-dimensional extension of G maps the boundary of τ into Aτ . Since
Aτ is convex, and hence an AE, there is a continuous extension of G from
the closed 3-simplex τ into Aτ .

If we consider two closed 3-simplices, τ and τ ′, then their overlap consists
of closed 2-simplices; hence the extensions to τ and τ ′ agree on this overlap,
Thus the union of all such extensions is a well-defined continuous function as
desired. The desired condition G[τ ] ⊆ Aτ was automatically fulfilled as we
went along. Continuing in this manner to 4-simplices, we obtain a continuous
operation G that agrees with F on all vertices of the triangulation.

It remains to see that this operation can be made to satisfy idempotence
and symmetry. As for idempotence, since F satisfies F (x, x) ≈ x, we can
easily define G(x, x) to be x. This may be taken as the definition of G � σ, for
each simplex σ of the diagonal subcomplex. We already have that F [σ] ⊆ Aσ

for all σ, including those on the diagonal. Since G = F on the diagonal, we
also have the required condition that G[σ] ⊆ Aσ. Incorporating this special
case into our definition of G, we now have a continuous idempotent operation.

As for symmetry, we merely need, for each simplex σ, to define G on σ
and ι[σ] at the same time. (If σ is a simplex of the diagonal subcomplex,
then σ = ι[σ], and so this condition has already been met.) Inductively,
we may assume that G = G◦ ι on all the boundary simplices of σ. Thus
we simply define G on σ as we did above, and on ι[σ] we define G by the
formula G = G◦ι. Clearly all the conditions are met, and we now have a
continuous, symmetric, idempotent binary operation on S2. This contradic-
tion completes the proof of the theorem.

2.6.1 Comment on the proof of Theorem 7.

In some ways the proof of Theorem 7 may be more comprehensible than
those that we have supplied for Theorems 4, 5 and 6, in §2.3, §2.4 and §2.5.
In those proofs we supplied a grid, which is tantamount to a triangulation,
but we needed to work with details of that grid (often speaking, for instance,
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of i and i + 1, etc.). In our proof of Theorem 7, we use the general and
inclusive notion of triangulation, which can be discussed without reference
to the detailed configuration of a given triangulation.

It now seems right to conjecture that the method will go a lot further
than we have seen it here so far.

2.7 An auxiliary theory.

In 1986—see [32, §3.18, page 35]—we introduced the following equational
theory, known here as Σ1:

F (φk(x), x, y) ≈ x (39)

F (x, x, y) ≈ y, (40)

for k ∈ ω, k ≥ 1. We proved [loc. cit.] that it is incompatible with every
compact Hausdorff space A of more than one element. In [36, §3.3.9] we
proved that Σ1 has a λ-value (§0.2) at least as large as diameter(A)/4. Here
we prove

Theorem 9 If A is compact, then µ(A,Σ1) ≥ diameter(A)/2 .

Proof. To prove the theorem by contradiction, we may suppose that
µ(A,Σ1) < diameter(A)/2. In a manner by now familiar, there exist (dis-
continuous) operations F and φ modeling (39–40) on A, and positive real
numbers δ0 ≤ δ1 < diameter(A)/2, such that F and φ are each constrained
by (δ0, δ1).

Since A is compact, there exist a, b ∈ A with d(a, b) = diameter(A).
Choose arbitrary q ∈ A. By compactness, the sequence φ n(q) has a conver-
gent subsequence:

lim
i−→∞

φ n(i)(q) = c ∈ A.

By the triangle inequality, either d(b, c) ≥ diameter(A)/2 or d(a, c) ≥ diameter
(A)/2. Without loss of generality, we will assume that d(b, c) ≥ diameter(A)/2.
By (40),

F
(
φ n(i+1)(q), φ n(i)(q), b

)
= φ n(i)(q) (41)

for all i, and hence this sequence has c as limit. On the other hand, according
to Lemma 15, the sequence in (41) is eventually within δ1 of F (c, c, b) = b
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(by (39)). Therefore, d(b, c) ≤ δ1 < diameter(A)/2, contrary to our as-
sumption. This contradiction completes the proof of the theorem.

We note that in the proof the (δ0, δ1)-constraint on φ was never used.

2.8 A second auxiliary theory.

In [36, §3.3.9] we introduced the following theory, known here as Σ2:

G(ψm+k(x, y), ψm(x, y), x, y) ≈ x (42)

K(x, y) ≈ G(u, u, x, y) ≈ K(y, x), (43)

for m, k ∈ ω, with k ≥ 1. We proved [loc. cit.] that Σ2 is incompatible with
any compact A with more than one element. More precisely, we proved that
λA(Σ2) ≤ diameter(A)/4. Here we prove something similar for µ.

Theorem 10 If A is compact, then µ(A,Σ2) ≥ diameter(A)/2 .

Proof. To prove the theorem by contradiction, we may suppose that
µ(A,Σ2) < diameter(A)/2. In a manner by now familiar, there exist (dis-
continuous) operations G, K and ψm modeling (42–43) on A, and positive
real numbers δ0 ≤ δ1 < diameter(A)/2, such that G, K and ψm are each
constrained by (δ0, δ1).

Let a and b be points of A with d(a, b) equal to the diameter of A.
By the triangle inequality, we have either d(a,K(a, b) ≥ diameter(A)/2 or
d(b,K(a, b) ≥ diameter(A)/2. Without loss of generality, we shall assume
that

d(b,K(a, b)) ≥ diameter(A)/2. (44)

Consider the sequence ψi(b, a); by compactness it has a convergent sub-
sequence:

lim
i−→∞

ψn(i)(b, a) = c ∈ A.

By (42),

G(ψn(i+1)(b, a), ψn(i)(b, a), b, a) = b (45)
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for all i. On the other hand, according to Lemma 15, the sequence in
(45) is eventually within δ1 of G(c, c, b, a) = K(a, b) (by (42)). Therefore,
d(b,K(a, b)) ≤ δ1 < diameter(A)/2, contrary to (44). This contradiction
completes the proof of the theorem.

Notice that the proof of Theorem 10 does not mention the (δ0, δ1)-constraint
on ψm, for any m. Ignoring this constraint, we obtain the following sharper
version:

Theorem 11 If A is a compact metric space of more than one element,
then there is no algebra A = 〈A,G,K, ψm〉m∈ω such that χ(G) and χ(K)
are both < diameter(A)/2, and A |= Σ2.

3 Dealing with composite operations.

There may be a problem in carrying some of the results to equations Σ that
involve composite operations. Suppose, for example that f is unary and
χ(f) = ε. If s lies between f(a) and f(c) on a segment, then there exists
b such that f(b) lies with ε of s. Our equation of interest may, however,
involve g(f(b)), and we might like to know that this value is near to g(s).
With what we have so far, we cannot conclude anything about the distance
between these two g-values.

3.1 n-iterated jumps

Let (A, d) be a metric space, and A = (A,F t)t∈T an algebra based on A.
Recalling χ from §0.3, we define

χn(A, d) = sup
τ

χ(τ).

Where τ ranges over all terms in operation symbols Ft that have depth ≤ n,
and where, for each τ , τ denotes the term operation corresponding to τ
in the algebra A = (A,F t)t∈T . We may also write χ∞(A, d) for the same
supremum, taken over all terms τ .

When the metric d is clear from the context, we may write χn(A) for
χn(A, d).
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Finally, for (A, d) a metric space, and Σ a set of equations of similarity
type 〈nt : t ∈ T 〉, we define

µn(A, d,Σ) = inf {χn(A, d) : A = (A,F t)t∈T |= Σ }; (46)

in other words, it is the infimum taken over all algebras built on A that satisfy
Σ. When the metric d is clear from the context, we may write µn(A,Σ) for
µn(A, d,Σ). We may also write µ∞(A, d,Σ) for the corresponding infimum
of χ∞-values.

Obviously there is a uniform version

χu
n(A, d) = sup

τ
χu(τ),

and likewise for µu
n. Most of this paper deals with compact metric spaces, on

which the two concepts coincide, so we will rarely mention χu
n.

It is not hard to see that µn ≤ µn+1 ≤ µ∞ for all n, and moreover we
generally expect that µn < µn+1 < µ∞. Therefore, concerning estimates from
below, viz. µn > ε, one should assert this for n as small as possible, in order
to convey the most information. On the other hand, such an estimate for a
larger value of n may be all that is available, hence very valuable in itself.

3.2 Iterated (δ, ε)-closeness.

Let us say that a function f : A −→ B is constrained by (δ, ε), or (δ, ε)-
constrained iff it satisfies

if d(x, x′) < δ, then d(f(x), f(x′)) < ε.

The notion is of course familiar, in that f is defined to be uniformly contin-
uous iff for every ε > 0 there exists δ > 0 such that f is (δ, ε)-constrained.

In working with a finite direct power An of a metric space (A, d), let us
agree to give An the following adjusted version of the sum metric:

d
(
(a1, . . . , an), (b1, . . . , bn)

)
=

1

n

(
d(a1, b1) + . . . + d(an, bn)

)
. (47)

This definition has the advantage that if diameter(A) = 1, then diameter(An) =
1. It also figures in the detailed proof of Lemma 13 just below.

Now suppose that there are positive reals δ0, δ1, . . . , δn such that every
operation of (A,Ft)t∈T is constrained by the n pairs (δ0, δ1), (δ1, δ2), . . . ,
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(δn−1, δn). In this case, we say that (A,Ft)t∈T is n-constrained by (δ0, δn).
The first lemma says that we may always assume that the δ’s form an in-
creasing sequence.

Lemma 12 If A = (A,Ft)t∈T is n-constrained by (δ0, δn), then there are
positive reals δ′i (for 0 ≤ i ≤ n) such that δ′n = δn, such that δ′n ≥ δ′n−1 ≥
· · · ≥ δ′1 ≥ δ′0, and such that (A,Ft)t∈T is constrained by the n pairs (δ′0, δ

′
1),

(δ′1, δ
′
2), . . . , (δ′n−1, δ

′
n).

Proof. If the given δi do not already form a monotone increasing sequence,
then for some i we have

δi > δi+1 ≤ δi+2 ≤ · · · ≤ δn−1 ≤ δn.

Let us define

δ′0 = δ′1 = · · · = δ′i = δi+1

δ′j = δj (for i < j ≤ n).

It is clear that these values of δ′j have the required properties.

Lemma 13 If A = (A,Ft)t∈T is n-constrained by (δ0, δn), then χn(A,Ft)t∈T ≤
δn.

We then define

χ?
n(A) = inf {δn : (∃δ0 > 0) A = (A,Ft)t∈T is n-constrained by (δ0, δn) };

(48)

µ?
n(A,Σ) = inf {χ?

n(A, d) : A = (A,F t)t∈T |= Σ }. (49)

Lemma 13 then implies the first inequality of

Lemma 14 χn(A) ≤ χ?
n(A) and µn(A,Σ) ≤ µ?

n(A,Σ). If A |= Σ, then
these last two µ-values are both zero.

In the sections that follow, we will be able to prove that µ?
n(A,Σ) ≥ K for

certain A, Σ and K > 0. While this information is obviously less informative
than it would be to have µn(A,Σ) ≥ K, it nevertheless has the virtues of
being provable and of being a non-trivial quantitative version of A 6|= Σ. In
one case (see §3.5) we have µ?

2(A,Σ) ≥ K while µ(A,Σ) = 0. In this case,
µ?

2 obviously conveys the greater amount of information.
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3.3 Some consequences of (δ, ε)-closeness.

Lemma 15 (Limit theorem, approximate version.) f(xi) approaches f(limxi)
within ε.

Lemma 16 (Intermediate Value Theorem, approximate version.) (Move
here from Lemma 29, §3.8.)

Lemma 17 (Brouwer Fixed-Point Theorem, approximate version.)

Lemma 18 (Borsuk-Ulam Theorem, approximate version.)

Lemma 19 Suppose that A is a triangulable compact metric space (i.e. the
geometric realization of a finite simplicial complex). Let S1 be the ordinary
1-sphere with arc-length distance, scaled to have diameter 1. Suppose that
F :A −→ S1 is (δ, ε)-constrained, where 0 < δ and 0 < ε < 2/3. Then there
exists a continuous function G :A −→ S1 such that d(F (a), G(a)) < ε for
all a ∈ A.

Sketch of proof. The proof is much like that of Theorems 4, 5 and 6,
in §2.3, §2.4 and §2.5, and especially like that of Theorem 7 in §2.6 (even
though this last result is officially about the 2-sphere).

Corollary 20 Suppose that Σ is a simple theory, and µ(S1,Σ) < 2/3. Then
λS1(Σ) ≤ 2µ(S1,Σ).

Corollary 21 (Conjectured.) Suppose that each equation of Σ equates two
terms of depth no more that k, and that µ?

k(S
1,Σ) < 2/3. Then λS1(Σ) ≤

2µ?
k(S

1,Σ).

Results like Corollaries 20–21 must be relatively abundant. We will ex-
tend their range to other spaces as tools become available.

3.4 Revisiting §2.8: lattice-ordered groups.

Following [36, §3.3.10] we define ΛΓ to be the following (doubly infinite) set
of equations:

x ≈ x ∧ [(zm+k − zm) + (x ∧ y)] (50)

x ∧ y ≈ x ∧ [(u − u) + (x ∧ y)] ≈ y ∧ x, (51)
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where zn (n ∈ ω) are terms defined recursively as follows:

z0 = 0; zn+1 = (zn + (x− (x ∧ y))).

In [36, §3.3.10] we gave an easy proof that lattice-ordered groups satisfy (50–
51); in other words Equations (50–51) are among the consequences of the
equational axioms of lattice-ordered group theory (which we do not state here
in detail). Thus any result of the form µn(A,ΛΓ) ≥ K or µ?

n(A,ΛΓ) ≥ K—
such as Theorem 23 just below—implies the same result for the theory of
lattice-ordered groups.

The incompatibility of compact Hausdorff spaces with lattice-ordered
groups was proved by M. Ja. Antonovskĭı and A. V. Mironov [3] in 1967.
For compact metric spaces, a positive value for λA(ΛΓ) was established by
W. Taylor [loc. cit.]. Here in §3.4 we prove a positive value for µ3(A,ΛΓ).

Our method for estimating µ3(A,ΛΓ) is to connect ΛΓ with the Σ2 ap-
pearing in Equations (42–43) of §2.8. Lemma 22 below will establish an inter-
pretation8 (in the sense of [22, 14]) of Σ2 in ΛΓ. (Thus Σ2 is a fortiori inter-
pretable in lattice-ordered groups.) For every algebra A = 〈A, ∧ , ∨ ,�,�〉
in the similarity type of ΛΓ, we define a new algebra A′ = 〈A,G,K, ψm〉m∈ω,
in the similarity type of Σ2, as follows. For a, b, c, d ∈ A, we let

G(a, b, c, d) = c∧ [(a� b) � (c∧ d)],
K(a, b) = a∧ b
ψm(a, b) = zn(a, b),

where zn is as above, and zn is the term operation associated to zn.
As noted above, the following lemma and theorem hold a fortiori for

lattice-ordered groups.

Lemma 22 If A satisfies ΛΓ, then A′ satisfies Σ2.

Proof. We need to see that Equations (42) and (43) hold in A′. We look
at

G(ψm+k(x, y), ψm(x, y), x, y) ≈ x (42)

8At some point it may become appropriate to add a section on the persistence of
µ-values under interpretation.
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in detail. To prove its satisfaction in A′, we need to substitute our definitions
of G and ψm into (42) and verify the resulting equation under ΛΓ. The reader
may check that the resulting equation is tantamount to (50), which is one of
the defining equations of ΛΓ. Thus (42) holds in A′. The proof for (43) is
similar.

Theorem 23 If A is a compact metric space of more than one point, then
µ3(A,ΛΓ) ≥ diameter(A)/2.

Proof. To prove the theorem by contradiction, we may suppose that
µ3(A,ΛΓ) < diameter(A)/2. By the definition (46), there exist (discontinu-
ous) operations ∧ , ∨ , �, � on A such that A = 〈A, ∧ , ∨ ,�,�〉 satisfies
ΛΓ, and such that χ3(A) < diameter(A)/2. This means that

χ(τ) < diameter(A)/2 (52)

for every term-operation τ of A having depth ≤ 3.
Now the algebra A′ of Lemma 22 is a model of Σ2, whose operations

G and K, each being a term-operation of depth ≤ 3, both have χ-value
< diameter(A)/2. This contradiction to Theorem 11 completes the proof of
our theorem.

3.5 Revisiting §2.1: the injective binary operation.

3.5.1 A = [0, 1].

We return our attention to Equations (8) of §2.1, which we repeat here for
convenience:

F0(G(x0, x1)) ≈ x0, F1(G(x0, x1)) ≈ x1. (8)

Moreover, we again let A = [0, 1] with the ordinary Euclidean metric. In §2.1
we proved that µ(A,Σ) = 0. Here we shall prove that µ?

2(A,Σ) = 1. In fact,
we shall prove it in a somewhat broader context.

Theorem 24 Let A = [0, 1] be given any metric that induces the usual topol-
ogy. Then µ?

2(A,Σ) = diameter(A).
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Proof. We note first that clearly µ?
2(A,Σ) ≤ diameter(A) for any A and

any Σ. Thus to prove the theorem by contradiction, we may suppose that
µ?

2(Y,Σ) < diameter(A). By Definitions (48–49) there exist (discontinuous)
operations F 0, F 1 and G modeling (8) on A, and positive real numbers
δ0 ≤ δ2 < diameter(A) such that (A,F 0, F 1, G) is 2-constrained by (δ0, δ2).
Thus there exists a further positive real δ1 such that

F 0, F 1 and G are each constrained by (δ0, δ1) and by (δ1, δ2). (53)

Since [0, 1] is compact, there exist a0, a1 ∈ A with d(a0, a1) = diam(A).
For flexibility of notation, we take two such pairs: d(a0, a1) = d(b0, b1) =
diam(A). Considering the four real numbers

G(a0, b0), G(a1, b0), G(a0, b1), G(a1, b1),

we may assume, without loss of generality, that the smallest among them is
G(a0, b0). Again without loss of generality, we may assume that G(a1, b0)) ≤
G(a0, b1). In other words, we have

G(a0, b0) ≤ G(a1, b0) ≤ G(a0, b1).

Thus, along the segment (a0, b0)(a0, b1) in the square [0, 1]2, the (δ0, δ1)-
constrained function G takes values that are above and below the value
G(a1, b0). By Lemma 29, there exists e ∈ [0, 1] such that

d (G(a0, e), G(a1, b0)) < δ1.

For the (δ1, δ2)-constrained function F 0 we now calculate, using Σ:

d(a0, a1) = d
(
F 0(G(a0, e)), F 0(G(a1, b0))

)
< δ2 < diameter(A).

This contradiction to our choice of a0, a1 completes the proof.

We notice that in this proof we needed the (δ0, δ1)-constraint only for the
binary operation G, and the (δ1, δ2)-constraint only for the unary operations
F 0, F 1. (In other words, (55) contains more information than necessary.)
It would thus be possible to give Theorem 25 a slightly sharper statement
by modifying the hypotheses according to this observation. Similar remarks
apply elsewhere in the paper. As far as we can see for now, such an endeavor
merits neither the effort involved nor the cumbersome statements that would
result.
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3.5.2 Comments on the proof of Theorem 25

Our estimate is made for χ?
2 only. This proof does not yield information on

χ2. The reason is that we must be able to estimate the effect of applying
F 0, F 1 and G to the number e that is supplied by Lemma 29. Such an e is
not necessarily9 in the range of our operations, so that we cannot make the
necessary estimate simply by applying some term-operation τ .

Comparing this proof with the corresponding proof for λ that appears
in [36], we note a lot of similarity. In fact this proof is the same almost
verbatim.

3.5.3 A = [0, 1]2.

Once again, we work with these equations:

F0(G(x0, x1)) ≈ x0, F1(G(x0, x1)) ≈ x1. (8)

We shall suppose that the usual topology of [0, 1] is given by a metric d0

with the property that d0(0, 1) ≥ 1. We then let A = [0, 1]2 with the metric
defined as a sum (taxi-metric, L1-norm): d((a, b), (c, d)) = d0(a, c) + d0(b, d).

Theorem 25 µ?
2(A,Σ) ≥ 1.

Proof. To prove the theorem by contradiction, we may suppose that
µ?

2(A,Σ) < 1. In a manner by now familiar, there exist (discontinuous)
operations F 0, F 1 and G modeling (8) on A, and positive real numbers
δ0 ≤ δ1 ≤ δ2 < 1 such that

F 0, F 1 and G are each constrained by (δ0, δ1) and by (δ1, δ2). (54)

Now B2 = [0, 1]4, and so the boundary of this space is a three-sphere
S3. Let us consider the action of G on this three-sphere. Since G is (δ0, δ1)-
constrained, it takes on δ1-close values at two antipodal points, by our version
of the Borsuk-Ulam Theorem (Theorem 18). Without loss of generality, two
antipodal points have the form ((0, x1), (y0, y1)) and ((1, u1), (v0, v1)). We
thus have

d
(
G

(
(0, x1), (y0, y1)

)
, G

(
(1, u1), (v0, v1)

) )
< δ1 .

9Objection: if we look at the proof of Lemma 29, we see that e really is in the range.
This needs to be sorted out before publication.
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Since F 0 is (δ1, δ2)-constrained, Equations Σ yield

1 ≤ d
(
(0, x1), (1, u1)

)
= d

(
F 0G

(
(0, x1), (y0, y1)

)
, F 0G

(
(1, u1), (v0, v1)

) )
< δ2.

3.6 Group theory on spaces with the fixed-point prop-
erty.

In this section we let Γ stand for any equational theory whose models are
groups. (Some variation is possible in choice of primitive operations and
axioms, but any such theory will do.) We will assume that binary + and
unary − are available, either as primitives or as derived operations.

A will be a metric space that has the fixed-point property: if f :A −→ A
is continuous, then there exists e ∈ A such that f(e) = e. Until we know the
full scope of Theorem 17, we will state and prove it only for a power [0, 1]n,
which is to say, for an n-simplex. A corresponding result for λ was proved
in §3.3.1 of [36].

Theorem 26 Let A = [0, 1]n be given any metric that induces the usual
topology, and let Γ denote group theory. Then µ?

2(A,Γ) = diameter(A).

Proof. We note first that clearly µ?
2(A,Γ) ≤ diameter(A) for any A

and any Γ. Thus to prove the theorem by contradiction, we may sup-
pose that µ?

2(A,Γ) < diameter(A). By Definitions (48–49) there exist (dis-
continuous) group operations � and � on A, and positive real numbers
δ0 ≤ δ2 < diameter(A), such that (A,�,�) is 2-constrained by (δ0, δ2). Thus
there exists a further positive real δ1 such that

� and − are each constrained by (δ0, δ1) and by (δ1, δ2). (55)

SinceA is compact, there are points a0, a1 ∈ A with d(a0, a1) = diameter(A).
Consider the function f :A −→ A defined by f(x) = (a1 � a0) � x. Since f
is (δ0, δ1)-constrained, Theorem (17) yields e ∈ A such that d(e, f(e)) < δ1.
Now let g :A −→ A be defined by g(x) = x � (�e � a0). Since g is (δ1, δ2)-
constrained, we have

d(a0, a1) = d
(
g(e), g(f(e))

)
< δ2 < diameter(A).

36



This contradiction to the choice of a0 and a1 completes the proof of the
theorem.

For unary operations of the form x 7−→ x + a and x 7−→ x − b, the con-
straints in (55) are redundant, since x−b is the same as x+a, where a = −b.
(For the full binary operations, they may not be redundant.) This redun-
dancy may be seen in the proof, in the fact that we applied the constraints
(55) only to operations of the form x + a. Thus (55) turns out to contain
more information than is necessary for the proof.

3.7 Groups of exponent N on R.

In this section we let ΓN stand for any equational theory whose models are
(additively written) groups satisfying x + · · · + x ≈ 0 (where x appears N
times on the left of this equation). For N = 2, this theory was known [36,
§3.3.7] to be incompatible with R.

We will use the fact that any function f : R −→ R that cycles a set of
N elements must have an approximate fixed point, by a minor variation on
Theorem 29.

Theorem 27 Let R be given any metric that induces the usual topology, and
let ΓN denote group theory with exponent N. Then µ?

2(R,ΓN) ≥ radius(A).

Proof. To prove the theorem by contradiction, we may suppose that
µ?

2(A,ΓN) < radius(A). By Definitions (48–49) there are a (discontinuous)
exponent-N group operation � on A, and positive real numbers δ0 ≤ δ2 <
radius(A), such that (A,�) is 2-constrained by (δ0, δ2). Thus there exists a
further positive real δ1 such that

� is constrained by (δ0, δ1) and by (δ1, δ2).

Let 0 be the unit element of the group (R,�). Since δ2 < radius(A), there
exists a ∈ R such that d(a, 0) > δ2. We consider the function f : R −→ R
given by f(x) = x � a. Clearly f(0) = a, f(a) = 2a, f(2a) = 3a, . . . and
f((N − 1)a) = 0. Since f is (δ0, δ1)-constrained, (a variant on) Theorem 29
yields e ∈ R such that d(e, f(e)) < δ1. Let g(x) = (N − 1)e � x. Since g is
(δ1, δ2)-constrained, we have

d(0, a) = d(g(e), g(f(e))) < δ2,
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in contradiction to our choice of a. This contradiction completes the proof
of the theorem.

3.8 A = Y , the triode; Σ = lattice theory.

Let A,B,C,D be four non-collinear points in the Euclidean plane, with D in
the interior of 4ABC. Our space Y is defined to be the union of the three
(closed) segments AD, BD and CD, called legs, with the topology inherited
from the plane. In fact, in order to give Y a definite metric d, we will further
require that 4ABC be equilateral with D at its center, and that each leg
have unit length. We then let d be the metric of the plane, as inherited by
Y .

For §3.8 we let Σ consist of axioms for lattice theory (expressed in terms
of ∧ and ∨). It was proved by A. D. Wallace in the mid-1950’s (see [38,
Alphabet Theorem, page xx] for a statement of the result) that the triode Y
is not compatible with Σ. Taking µ?

3 as defined in §3.2, we shall prove the
sharper result that

Theorem 28 µ?
3(Y,Σ) ≥ 0.5.

Before proving Theorem 28 we state and prove one Lemma. It is our discon-
tinuous approximate replacement for the Intermediate Value Theorem.

Lemma 29 Suppose that f maps a convex subset of R into R, and that f is
(δ, ε)-constrained for some δ, ε > 0. If a < c and s is between f(a) and f(c),
then there exists b with a ≤ b ≤ c and with d(f(b), s) < ε/2.

Proof. Consider a finite sequence of reals that begins with a and ends with
c, and such that every step is smaller than δ. The corresponding function-
values take steps smaller than ε while traversing the interval between f(a)
and f(c). Moreover s must lie in one of these f -intervals smaller than ε;
hence the conclusion.

Proof of Theorem 28. For a contradiction, suppose that µ?
3(Y,Σ) < 0.5.

By Definitions (48–49) there exist (discontinuous) lattice operations ∧ and
∨ on Y , and positive real numbers δ0 and δ3, such that (Y, ∧ , ∨ ) is 3-
constrained by (δ0, δ3), and moreover such that δ3 < 0.5. Thus there exist
further positive reals δ1, δ2 such that

∧ and ∨ are each constrained by (δ0, δ1), by (δ1, δ2), and by (δ2, δ3). (56)
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By Lemma 12 we may assume that δ0 ≤ δ1 ≤ δ2 ≤ δ3.

Part 1. We shall prove that either A∧D or A∨D lies in the leg AD
(and similarly for B and D). If A∧D does not lie in AD, then we have D
between A = A∧A and A∧D. Consider the function of meeting with A, viz.
X 7−→ X ∧A. Since D is between two of its values, we may apply Lemma
29 to obtain E ∈ AD with d(A∧E,D) < δ1. Now, joining with A, we have
d(A∨ (A∧E), A∨D) < δ2; by Σ this may be simplified to d(A,A∨D) < δ2.
In other words A∨D lies in AD as desired.

Part 2. We shall prove that either A∧D or A∨D lies within δ2 of A (and
similarly with A changed to B and to C). By Part 1, the three points A,
A∧D and A∨D lie along a segment. Without loss of generality we have
A∨D between A = A∧A and A∧D on that segment. If we consider the
function of meeting with A (as in Part 1), then Lemma 29 again yields E
such that d(A∧E, A∨D) < δ1. As in Part 1, joining with A again yields
d(A,A∨D) < δ2.

Part 3. From Part 2, we may assume, without loss of generality, that

d(A,A∨D) < δ2 and d(B,B ∨D) < δ2. (57)

(The two vertices might be A and C or B and C, and both operations might
be meets rather than joins, but surely two of the three end-vertices must
have the same pattern.)

Part 4. A∨B cannot lie in both of the disjoint sets [A,D) and [B,D) (these
are two of the legs, minus the endpoint D). Without loss of generality we will
assume that A∨B is not in [B,D). Therefore D lies between B = B ∨B
and A∨B. By a familiar argument (this time involving joining with B)
we obtain d(D,E ∨B) < δ1 for some E. Now meeting with B, we have
d(B ∧D,B) < δ2.

Part 5. Taking the conclusion of Part 4, and joining with D, yields d(D,
D∨B) = d(D∨ (B ∧D), D∨B) < δ3. Combining this with (57), we have

d(B,D) ≤ d(B,D∨B) + d(D∨B,B) ≤ δ3 + δ2 < 1.

Here we have a contradiction to the fact that d(B,D) = 1 (see the start of
§3.8), which completes the proof of Theorem 28.
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3.8.1 Comments on the proof of Theorem 28

Our estimate is made for χ?
3 only. This proof does not yield information on

χ3. The reason is that we must be able to estimate the effect of applying ∧
and ∨ to the points called E in Parts 1, 2 and 4. Such an E is not necessarily
in the range of our operations, so that we cannot make the necessary estimate
simply by applying some term-operation τ .

Comparing this proof with the corresponding proof for λ that appears
in [36], we note a lot of similarity. It seems as though we could work out
a theory for a composite measure, including the possibility of limited jumps
and of approximate satisfaction. This will have to await a later date.

3.9 A very special space.

Section under construction.
For α any real number with 0 < α < 1, we define

Aα = { (x, y, z) : x2 + y2 = 1 &

(−αx ≤ z ≤ αx or z = 0) } ⊆ R3.

This space may easily be sketched as a subset of a cylinder in R3. We give
it the rectangular or taxicab metric in that space: d(x,y) =

∑
|xi − yi|.

(Notice that the spaces Aα are all homeomorphic one to another, but the
homeomorphisms are not isometries.)

Notice that for (x, y, z) ∈ Aα with x < 0, the definition yields z = 0 as
the only possible value for z. Thus Aα contains the circle

C = { (x, y, 0) : x2 + y2 = 1 },

and for negative x, these are the only points in Aα. For positive x, there are
other points (x, y, z). The farthest of these from the circle C are (1, 0, α) and
(1, 0,−α). Thus α is a measure of how far Aα extends away from the circle
C.

For future reference, we define a closed curve f in Aα (for 0 ≤ t ≤ 2π),
as follows:

f(t) =

{
(cos t, sin t, −α cos t) if cos t ≥ 0

(cos t, sin t, 0) if cos t ≤ 0.
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(f maps, so to speak, to the lower periphery of Aα.) Concerning the point
A = (1, 0, α) ∈ Aα, We proved in [36, loc. cit.] that A has distance at least
2α from every point B = (cos t, · · · ) in the image of f .

For this section, when we refer to a closed curve, we mean a continuous
map with domain S1. We view our f(t) as such a closed curve, by representing
S1 as R/2π, and relying on the periodicity of the trigonometric functions.
Finally when we say that closed curves g0(t) and g1(t) in A are homotopic,
we mean that there exists a map G :S1× [0, 1] −→ A such that G(t, i) = gi(t)
for t ∈ S1 and i ∈ {0, 1}.

For µ?
2(Aα,Γ) ≥ α, we restrict Γ to be a set of equations in the operations

+ and − that contains the three equations

(x+ y) + (−y) ≈ x (58)

x+ 0 ≈ x; 0 + x ≈ x. (59)

We shall prove that for such a Γ,

µ?
2(Aα,Γ) ≥ α. (60)

The proof is by contradiction. To this end, we assume now that µ?
2(Aα,Γ) <

α.
By definition of µ?

2, there exist positive reals δ0 ≤ δ1 ≤ δ2 and (discontinu-
ous) operations �,� obeying Γ, with both operations constrained by (δ0, δ1)
and by (δ1, δ2). Let 0 = A0, A1, A2, . . . , Ak = A be a sequence of members of
Aα, with d(Ai, Ai+1) < δ0 for each i. By the (δ0, δ1)-constraint, we have

d(Ai �f(t), Ai+1 �f(t)) < δ1

for each i and each t. By (a version of) Lemma 19, for each i there is a
continuous curve gi :S

1 −→ Aα

d(gi(t), Ai �f(t)) < δ1 (61)

for each i and each t. Combining the last two inequalities, we have

d(gi(t), gi+1(t)) < 3 δ1

for each i and each t. Assuming now that 3δ1 is less than the diameter of
a circle in our model, we know that all the functions gi are homotopic. In
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particular gk is homotopic to f(t) and hence maps onto {f(t) : π/2 ≤ t ≤
3π/2}. By surjectivity and (61) there exists t0 such that

d(A�f(t0), (−1, 0, 0)) < δ1. (62)

By reasoning similar to that for (62), except using the first equation of
(59), we have successively nearby points 0 = B0, B1, . . . , Bm = f(t0) and
maps hi, each close to the corresponding f(t) �Bi. In this way, we arrive at
the existence of s0 with

d(f(s0) �f(t0), (−1, 0, 0)) < δ1. (63)

Now from (62) and (63), from the group equation (58), and from the (δ1, δ2)-
constraint, we have

d
(
A, (−1,0, 0) �f(t0)

)
= d

(
(A�f(t0)) �f(t0), (−1, 0, 0) �f(t0)

)
< δ2;

d
(
f(s0), (−1,0, 0) �f(t0)

)
= d

(
(f(s0) �f(t0)) �f(t0), (−1, 0, 0) �f(t0)

)
< δ2.

By the triangle inequality, d(A, f(s0)) < 2δ2 < 2α. This contradicts our
earlier assertion that every point in the image of f is at least 2α from A, and
thus the the result is proved.

Also note that Aα is compatible with H-space theory. (For the moment
this is left to the reader.)

ONE FINAL PIECE would be to work out the diameter of Aα. Then
check out the range of normalized values of λ. It looks like we would still get
a large range of λ-values.
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Państwowe Wydawnictwo Naukowe, Warsaw, 1967, 251 pages.

[7] R. Bott, On symmetric products and the Steenrod squares, Annals of
Mathematics 57 (1953), 579–590.

[8] B. F. Caviness and J. R. Johnson, eds., Quantifier Elimination and
Cylindrical Algebraic Decomposition. Texts and Monographs in Symbolic
Computation, New York: Springer-Verlag, 1998.

[9] T. H. Choe, On Compact Topological Lattices of Finite Dimension,
Transactions of the American Mathematical Society 140 (1969), 223–
237.

[10] A. H. Clifford, Connected ordered topological semigroups with idempo-
tent endpoints, I. Transactions of the American Mathematical Society
88 (1958), 80–98.

[11] G. E. Collins, Quantifier Elimination for the Elementary Theory of Real
Closed Fields by Cylindrical Algebraic Decomposition, Lecture Notes in
Computer Science 33 (1975), 134-183.

[12] J. Dugundji and A. Granas, Fixed-point theory I, Państwowe Wydaw-
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Mathematicae 17 (1931), 210–239.

[27] A Decision Method for Elementary Algebra and Geometry,
RAND Corp. monograph, 1948.

[28] A Decision Method for Elementary Algebra and Geometry, 2nd
ed. Berkeley, CA: University of California Press, 1951.

44



[29] W. Taylor, Characterizing Mal’cev conditions, Algebra Universalis 3
(1973), 351–397.

[30] The fine spectrum of a variety, Algebra Universalis 5 (1975),
263–303.

[31] Varieties obeying homotopy laws, Canadian Journal of Math-
ematics 29 (1977), 498–527.

[32] The clone of a topological space, Volume 13 of Research and
Exposition in Mathematics, 95 pages. Heldermann Verlag, 1986.

[33] The Geometry of Computer Graphics, Wadsworth and Brooks-
Cole, Pacific Grove, CA, 1992.

[34] Spaces and equations, Fundamenta Mathematicae 164 (2000),
193–240.

[35] Equations on real intervals, Algebra Universalis 55 (2006),
409–456.

[36] Approximate satisfaction of identities, 98 pp., 2010, to appear.

[37] J. van Mill, A topological group having no homeomorphisms other than
translations. Transactions of the American Mathematical Society 280
(1983), 491–498.

[38] A. D. Wallace, The structure of topological semigroups, Bulletin of the
American Mathematical Society 61 (1955), 95–112.

Walter Taylor
Mathematics Department
University of Colorado
Boulder, Colorado 80309–0395
USA
Email: walter.taylor@colorado.edu

45


