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Abstract. The time may be right to ask for an enumeration or classification

of all the reasonably small topological algebras. Here the terrain is surveyed, and

a program of investigation is proposed.

0 Introduction.

This paper is part of a continuing investigation—see the author’s papers [48]
(1986), [49] (2000), [50] (2006), [52] (2010), and [53] (2011)—into the com-
patibility relation, which is described in (2) below. A. D. Wallace defined
the inquiry succinctly in 1955, when he asked [58, p. 96], “Which spaces
admit what structures?” By “structure,” he meant the existence of contin-
uous operations identically satisfying certain equations: e.g., the structure
of a topological group or a topological lattice, and so on. Here we survey
the current state of knowledge in this area, especially for finite simplicial
complexes, and ask some refined versions of Wallace’s question.

0.1 Role of this investigation in mathematics.

We see such topological structure as fundamental to mathematics. Gener-
ally, there seem to be two ways to put an infinite number system on a firm
logical and practical foundation. The first is through recursion, the method
that underlies calculations with integers and rational numbers (for exam-
ple). The second is through continuity of operations, as in the real number
system R, where we can meaningfully calculate values like sin(π/3) or 3

√
2

by approximation. Here we are looking into the possibilities of calculation
through continuity.

For these two modalities to be available in any practical way, we must,
at the very least, be talking about a topological space that has a countable
dense subset—the first axiom of countability. Thus, for example, discrete
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topological spaces are compatible with any consistent set of equations, but
a discrete topological algebra is of no use in pursuing calculations through
continuity. Discrete spaces play no role in the rest of this paper.

0.2 Limited focus of this investigation.

The investigation emphasizes topological algebras that satisfy some non-
trivial (in the sense of §6.1) equations. We do not wish to diminish the
importance of other algebras—for instance some topological semigroups are
of paramount importance, and yet the associative law remains trivial in the
sense of §6.1. But the main unknown, under the present focus, is the identical
satisfaction of equations.

In keeping with the ideas of §0.1, we limit our attention to first-countable
spaces. In fact we mostly limit ourselves to very simple spaces: finite simpli-
cial complexes. First of all, much of the variation and mystery of the subject
already lies in this seemingly elementary domain. Secondly, as soon as we
admit infinite polyhedra, any consistent set of equations can be modeled (see
§5 below).

Most of our attention will be to connected simplicial complexes. Every
finite model of an equation-set Σ may be viewed as a topological model of
Σ based on a zero-dimensional complex, which is of course disconnected.
These models, and any other disconnected topological models, are generally
not under consideration. This exclusion is most important, and will be re-
iterated, in the open questions of §9.

0.3 Layout of the paper.

The beginning sections lay out concepts relevant to our results and problems.
The reader who is proficient in these notions may proceed to §7, and examine
the examples shown there, which are the heart of the paper. After that, one
might read the comments and questions that arise in §§8–9. These sections
comprise the main new material of this paper.

0.4 Acknowledgments

I thank George M. Bergman, who read the manuscript very closely, and
made many helpful suggestions. I want also to acknowledge and thank Don
Pigozzi for his long-term encouragement of myself and others in the study
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of equational logic, the central focus of this article. This is a field where he
clarified many issues; see for instance his articles with W. J. Blok [8] and
with K. Palasińska [39].

1 Satisfaction of equations by operations.

Readers with some familiarity with logic or general algebra can easily skip
§1, at least on a first reading.

1.1 Terms and equations

A similarity type consists of a set T and a function t 7−→ nt from T to
natural numbers. A term of type 〈nt : t ∈ T 〉 is recursively either a variable
or a formal expression of the form Ft(τ1, . . . , τnt) for some t ∈ T and some
shorter terms τi of this type. An equation of this type is a formal expression
τ ≈ σ for terms τ and σ of this type. A formal equation makes no assertion,
but merely presents two terms for consideration. The actual mathematical
assertion of equality is made (in a given context) by the satisfaction relation
|= (see (1) below). We mostly work with a set Σ of equations, finite or
infinite, and tacitly assume that there is a similarity type 〈nt : t ∈ T 〉 such
that each equation in Σ is of this type.

Examples: In almost any concrete example of interest, the foregoing
formality is not really necessary for comprehension. It suffices to give, for
example, the familiar assertion that “Σ has two binary operations ∧ and
∨,” instead of insisting on e.g. “∧ = F1 and ∨ = F2, where T = {1, 2}
and n1 = n2 = 2.” In such a simplified context, formal equations may be
written like ordinary equations in standard lattice theory. (One should be
careful, however, about writing informal terms such as “x ∧ y ∧ z,” which is
not meaningful in the absence of associativity.)

1.2 Satisfaction of equations

Given a set A and for each t ∈ T a function Ft : An(t) −→ A (called an
operation), we say that the operations Ft satisfy Σ and write

(A,F t)t∈T |= Σ, (1)
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iff for each equation σ ≈ τ in Σ, both σ and τ evaluate to the same function
when the operations Ft are substituted for the symbols Ft appearing in σ
and τ .

A structure of the form (A,F t)t∈T (as in (1)) is called an algebra; the
set A is called the universe of (A,F t)t∈T . Often, if the context permits, we
denote (A,F t)t∈T by the bold letter corresponding to the letter denoting the
universe, and so on. Then we can express (1) by saying that the algebra A
satisfies (or models) Σ.

In discussing satisfaction of equations, it is standard (and helpful) to
distinguish as we have done between an operation symbol Ft and an operation
F t interpreting the symbol.1 Nevertheless in keeping with the last part of
§1.1 above, we may sometimes omit the bar from familiar operations like +,
∧ and so on.

2 Compatibility of a space with a set of equa-

tions.

Given a topological space A and a set of equations Σ, we write2

A |=ctn Σ, (2)

and say that A and Σ are compatible, iff there exist continuous operations
Ft on A satisfying Σ, in other words iff (1) holds with continuous operations
F t. (Here we mean that each function F t :Ant −→ A should be continuous
relative to the usual product topology formed on the direct power Ant .)

One may also read (2) as “A topologically models Σ,” or “A continuously
models Σ.”

Given operations F t on a topological space A, we may of course form the
algebra A = (A;F t); if in addition each F t is continuous, we may say that
this A is a topological algebra based on the space A. With this vocabulary,
the compatibility relation (2) may be rephrased as follows: there exists a
topological algebra satisfying Σ that is based on the space A.

1Obviously the simple notation F t will be inadequate if more than one operation in-
terprets Ft in a given discussion.

2In a context that contains little possibility of confusing (1) and (2) one may omit the
designation “ctn” for continuous modeling, and simply write A |= Σ for (2). We have done
this in [48], [49], [50], [52] and [53].
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Thus, for instance, A is compatible with group theory if and only if A is
the underlying space of some topological group. If desired, one may skip to
§7 on a first reading, for a much longer list of examples.

3 General results on compatibility.

While the definitions are simple, the relation (2) remains mysterious. Two
results, one fifty years old, the other recent, point toward this mystery. First,
the algebraic topologists have long known that the n-dimensional sphere Sn

is compatible with H-space theory (x·e ≈ x ≈ e·x) if and only if n = 1, 3 or
7. (There is a large literature on this topic; one landmark paper was Adams
[1].) Second, for A = R, the relation (2) is algorithmically undecidable for Σ
— see [50]; i.e. there is no algorithm that accepts as input an arbitrary finite
Σ, and outputs the truth value of (2) for A = R. In any case, (2) appears to
hold only sporadically, and with no readily discernible pattern.

The mathematical literature contains numerous but scattered further ex-
amples of the truth or falsity of specific instances of (2). The author’s earlier
papers [48], [49], [50], [52] collectively refer to most of what is known, and
in fact many of the earlier examples illustrating incompatibility are recapit-
ulated throughout the long article [52]. The present article will cover most
of the known compatibilities for finite simplicial complexes.

4 Compatibility and the interpretability lat-

tice.

Here we review a notion introduced by W. D. Neumann in 1974 (see [38]), and
further studied by O. C. Garćıa and W. Taylor in 1981 (see [20]). (In 1968
J. Isbell [25] constructed quasi-orderings of arbitrary categories; the ordering
we use—i.e. Neumann’s—can be seen as arising from Isbell’s ordering.)

4.1 Interpretability as an order.

We introduce an order on the class of all sets Σ, Γ . . . of equations, as follows.
Let us suppose that the operation symbols of Σ are Fs (s ∈ S), and the
operation symbols of Γ are Gt (t ∈ T ). We say that Σ is interpretable in Γ,
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and write Σ ≤ Γ, iff there are terms αs (s ∈ S) in the operation symbols Gt

such that, if (A,Gt)t∈T is any model of Γ, then (A,αs)s∈S is a model of Σ.
A typical example has Γ defining Boolean algebras and Σ defining Abelian

groups with operations +,−, 0. Here the terms α+ and α− are both equal to
the so-called symmetric difference α+(x, y) = α−(x, y) = (x ∧ (¬y)) ∨ (y ∧
(¬x)). (It is worthwhile noticing that this interpretation is neither one-one
on the class of all BA’s nor onto the class of all Abelian groups.) For further
concrete examples, see §7.2.5, §7.5.4 and §8.3 below.

Strictly speaking, we need to observe that, so far, our relation ≤ is not
anti-symmetric. It is easy to find distinct sets Σ1 and Σ2 that are mutually
related by ≤. It is however a quasi-order, and when we speak of an order,
or a least upper bound, and so on, we are referring to the order formed in
the usual way modulo the equivalence relation that includes the pair (Σ1,Σ2)
whenever the two Σi are as above, i.e. Σ1 ≤ Σ2 ≤ Σ1. We generally will
leave this fine point unexpressed.

4.2 Interpretability defines a lattice

Given sets Σ and Γ of equations, there is a set Σ∧ Γ that is a greatest lower
bound of Σ and Γ in the ≤-ordering of §4. For a precise definition, including
an axiomatization of Σ ∧ Γ, the reader may consult R. McKenzie [37] or O.
Garćıa and W. Taylor [20].

We describe here the (algebraic) models of Σ∧Γ. We make the inessential
assumption that the operation symbols of Σ (resp. Γ) are Fs (s ∈ S) (resp.
Ft (t ∈ T )), with S disjoint from T . The operation symbols of Σ ∧ Γ are Fj
(j ∈ S ∪ T ), together with a new binary operation symbol p. The models of
Σ ∧ Γ are precisely all algebras isomorphic to a product A×B, where

(i) A |= Σ.

(ii) B |= Γ.

(iii) For each t ∈ T , A |= Ft(x1, . . . , xn) ≈ x1 and A |= p(x1, x2) ≈ x1.

(iii) For each s ∈ S, B |= Fs(x1, . . . , xn) ≈ x1 and A |= p(x1, x2) ≈ x2.

For instance, to see that Σ∧Γ ≤ Σ, we define an interpretation as follows.
For s ∈ S, the term αs is Fs(x1, x2, . . .); for t ∈ T , the term αt is x1, and
αp(x1, x2) is x1. For any (A,F s)s∈S, the interpreted algebra (A,F j)j∈S∪T
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clearly has the form A × B described above, with B a singleton. Mutatis
mutandis, we have Σ ∧ Γ ≤ Γ. For the fact that Σ ∧ Γ is a greatest lower
bound, let us suppose that Φ is a set of equations with operation symbols Gi

(i ∈ I), and that there are terms αi (resp. βi) interpreting Φ in Σ (resp. Γ).
It is not hard to see that the terms p(αi, βi) will interpret Φ in Σ ∧ Γ.

Continuing our inessential assumption that S ∩ T = ∅, it is not hard to
see that Σ∪Γ is a least upper bound3 of Σ and Γ, which we may also denote
Σ ∨ Γ.

4.2.1 The spaces compatible with ∆ ∧ Γ.

For an arbitrary topological space C, and for arbitrary sets Σ and Γ of equa-
tions, C |=ctn Σ ∧ Γ if and only if C is homeomorphic to a product space
A×B, where A |=ctn Σ and B |=ctn Γ.

Proof. We continue the notation and assumptions of §4.2. Given C equal
(or homeomorphic) to the product space A×B, and topological algebras A
and B modeling Σ and Γ, respectively, we extend A and B to (S∪T )-algebras
using clauses (iii) and (iv) of §4.2, and then take their product. This product
has underlying space C and models Σ∧Γ. Thus C is compatible with Σ∧Γ.

Conversely, given a space C compatible with Σ ∧ Γ, the existence of the
corresponding spaces A and B is proved in [20, Proposition 5, p. 22].

4.3 For each space, compatibility defines an ideal of
the lattice.

Let A be an arbitrary topological space. We will see that the class of all Σ
that are compatible with A forms an ideal in the interpretability lattice. In
this report we shall denote this ideal by I(A).

First, let us suppose that A |=ctn Γ and that Σ ≤ Γ. By definition of |=ctn,
there is a topological algebra (A,Gt)t∈T , that models Γ. By the definition
of Σ ≤ Γ, we have that (A,αs)s∈S models Σ, with S and T disjoint. The
operations αs are built using composition from the continuous operations Gt,
hence are continuous themselves. In other words, (A,αs)s∈S is a topological
algebra that models Σ. Therefore A |=ctn Σ, as desired.

3For any set A of sets of equations (with all their types disjoint), the union
⋃

A is a
least upper bound of the family A. However the lattice is a proper class, and there may
exist a subclass that has no join.
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Next, given Σ and Γ, each compatible with the space A, we must show
that Σ∨Γ = Σ∪Γ (described at the end of §4.2) is compatible with A. This
result is immediate from the definitions involved.

Thus each space A yields an ideal in the interpretability lattice, which is
denoted I(A).

4.3.1 I(A) is principal: the theory ΣA.

Given a space A, we define a theory ΣA as follows. For each continuous
function µ : An −→ A, there is an n-ary operation symbol Fµ. For 1 ≤
i ≤ n < ω we let πni : An −→ A be the continuous function defined by
πni (a1, . . . , an) = ai. For a continuous function λ : An −→ Am, and for
1 ≤ i ≤ m, we let λi denote the continuous function πmi ◦λ. Now we define
ΣA to consist of the equations

Fπn
i
(x1, . . . , xn) ≈ xi (3)

Fµ(Fλ1(x1, . . . , xm), . . . , Fλn(x1, . . . , xm)) ≈ Fµ◦λ(x1, . . . , xm). (4)

for all 1 ≤ i ≤ n and all pairs of continuous functions Am
λ−→ An

µ−→ A.
We shall see that ΣA generates the ideal I(A). (This was asserted without
proof in [20, Proposition 11].)

It is not hard to see that A |=ctn ΣA: for the requisite topological algebra

on A, one simply takes Fµ = µ, for all An
µ−→ A. Thus ΣA ∈ I(A), and

so the principal ideal generated by ΣA is a subset of I(A). For the reverse
inclusion, let us consider an arbitrary Σ ∈ I(A). This means that A |=ctn Σ;
i.e., there exists a topological algebra A = (A,Gs)s∈S satisfying Σ. We
construct an interpretation of Σ in ΣA as follows. For each n = 1, 2, . . . and
each n-ary s ∈ S we define the term αs to be Fλ(x1, . . . , xn), where λ is the
operation Gs : An −→ A. It is not hard to see that the terms αs form an
interpretation of Σ in ΣA. (The proof uses the given fact that A |=ctn Σ,
together with an inductive argument on all the subterms of terms appearing
in Σ.) Thus Σ ≤ ΣA.; i.e., Σ lies in the desired principal ideal. Thus the two
sets are equal: I(A) is the principal ideal generated by ΣA.

Nevertheless, the equation-set ΣA is large and unwieldy. In a few cases,
we know a simple finite generator of I(A). For example if A is any of the
spaces mentioned in §6.1 below, then I(A) is the principal ideal generated
by F (x) ≈ F (y), as one may easily see from the results cited in §6.1. For
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such a space A and a finite exponent k, the ideal I(Ak) is also principal, as
is proved in [49, Theorem 2 and §11.4].

If A is the one-sphere S1, then I(A) is the principal ideal generated by
Abelian group theory [49, Theorems 42–43]. If A is the dyadic solenoid,
then I(A) is the principal ideal generated by the theory of Z[1/2]-modules4

[49, Theorems 46–47]. For both I(S1) and I(S) (S the solenoid), the ideal
generator can be taken as a finite set of equations.

For any given A, we generally do not know whether I(A) is generated
by a single finite set Σ of equations. Further speculations on the generators
(e.g. whether there exists such a Σ that is a recursive set of equations) remain
equally opaque.

4.3.2 Unions of chains

If Λ2 is a set of equations, and if Λ1 is an arbitrary subset of Λ2, then Λ1 ≤ Λ2

in our lattice. The converse is far from true: even if Λ1 ≤ Λ2, it may be
true that the two Λi have disjoint similarity types. Thus the consideration
of the union of a chain (under inclusion) is not central to our main topic.
Nevertheless, we include one small observation.

The ideal I(A) may not be closed under unions of chains. One may have
Λ1 ⊆ Λ2 ⊆ Λ3 ⊆ . . ., with A |=ctn Λk for each k, but A 6|=ctn Λ =

⋃
Λk. Such

Λk—with A taken as a closed interval of the real line—may be seen in §7.2.2
below. (The example comes from [47, p. 525].) In other words, every finite
subset of Λ lies in I(A), but Λ does not.

Incidentally, this example shows that while the union of a chain (under
inclusion) is an upper bound of that chain, it need not be a least upper bound.

4.3.3 Sometimes I(A) is a prime ideal.

If C is a product-indecomposable space, then ΣC is meet-prime, which further
implies that I(C) is a prime ideal in the lattice.

Proof. Suppose that Σ ∧ Γ ≤ ΣC . By §4.2.1, C is homeomorphic to a
product space A × B with A |=ctn Σ and B |=ctn Γ. Since C is product-
indecomposable, either A or B is a singleton. Thus C is homeomorphic to A
or to B. In the former case Σ ≤ ΣC , and in the latter Γ ≤ ΣC .

4Z[1/2] is the ring of all rationals with denominator a power of 2.
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4.3.4 The complementary filter.

If A is product-indecomposable, then by §4.3.3 the complement of I(A) is a
filter which we will denote F (A). This consists of all Σ that are not com-
patible with A. By §4.3.2, when A is a closed interval of R, there is a set
Σ ∈ F (A) such that no finite subset of Σ is in F (A). Hence this filter is
generally not Mal’tsev-definable (see [45]). It is unknown whether it might
be subject in some cases to a syntactic definition (such as a weak Mal’tsev
condition). (Exception: in [45] we gave a Mal’tsev condition describing F (A)
for A a two-element discrete space.)

4.4 The ideal of a product of two spaces.

Let A and B be topological spaces. We saw in §4.2.1 that if A and B
are compatible with Σ and Γ, respectively, then the product space A × B is
compatible with the meet Σ ∧ Γ.

Now if we have ∆ ∈ I(A) ∩ I(B), then ∆ is compatible with both A and
B. By the previous paragraph, A×B is compatible with ∆∧∆, which is co-
interpretable with ∆, hence equal to ∆ in the lattice. In other words, we now
have I(A) ∩ I(B) ⊆ I(A × B). They are not generally equal. For instance,
if A is not homeomorphic to a perfect square, then, though I(A × A) will
contain the perfect-square equations (§7.5 below), I(A) ∩ I(A) will not.

5 Note on free topological algebras.

Let A be a metrizable space, and Σ a finite or countable set of equations
that is consistent (does not entail x ≈ y). Considering A purely as a set,
one of course has the free algebra FΣ(A); it has A embedded as a subset,
and satisfies the equations Σ. In 1964, S. Świerczkowski showed [44] how to
topologize (even metrize) FΣ(A) in such a way that A is embedded as a sub-
space, and each operation is continuous. Thus in particular, Σ is compatible
with the topological space that underlies FΣ(A).

We mention this example of compatibility to illustrate the fact that, be-
yond consistency, there is no apparent constraint on the Σ that can appear
in the compatibility relation A |=ctn Σ, even when we require A to satisfy the
first countability axiom, as described in §0.1.

The topological spaces defined by Świerczkowski are large and non-com-
pact. If A is a CW-complex, then so is FΣ(A) (see Bateson [6]), but the
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construction of the algebra FΣ(A) is inherently infinitary, and so the complex
structure is, to our knowledge, almost always infinite. It is only for very
special and somewhat trivial equation-sets Σ that FΣ(A) turns out to be
finitely triangulable.5 By way of contrast, our main proposal in this report
(see §6 below) will be to consider I(A) when A is a finite simplicial complex.
Here the compatible Σ appear to be more limited.

6 Restrictions on compatibility for a finite

complex.

We turn our attention toward compact Hausdorff spaces, mostly limiting it
to those connected spaces that have the form of a finite simplicial complex.
The latter form the most down-to-earth geometric corner of topology, and
hopefully our understanding could be rooted there. For simplicity, we will
refer to a space as finite if it has a finite triangulation, and as compact if it
is compact and Hausdorff.

Our starting point is the impression that the various Σ that have been ob-
served on finite connected complexes often fall into several broad categories:
lattice-related equations, group-related equations, [k]-th power equations,
simple equations, and a few special equation-sets. In this section we review a
few incompatibility results that make such a division slightly more plausible.

6.1 Undemanding sets of equations.

A set Σ is called undemanding if it can be satisfied on some set of more than
one element—equivalently, on any set— by taking each operation to be either
a projection function or a constant function. Such operations are continuous,
and hence if Σ is undemanding, then Σ is compatible with every space A.
Taylor proved [49] a sort of converse result: that many finite spaces A have
the property that A |=ctn Σ only for undemanding sets Σ. (The proofs apply
algebraic topology of the sort used in analyzing H-spaces, as mentioned in
§3.)

In other words, such an A is compatible with no interesting Σ! The list of
such A contains, for instance, all spheres other than S1, S3 and S7, the Klein
bottle, the projective plane, a one-point join of two 1-spheres, and several

5For example, for Σ defining G-sets over a finite group G.
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others. It appears that the proofs could be extended to many other finite
A, but no one has carried out this job. From these considerations it appears
that for many finite A, perhaps for most, the situation is totally arid.

For such a space A, the ideal I(A) is the smallest ideal containing every
undemanding set of equations. In fact this ideal is generated by the single
undemanding equation f(x) ≈ f(y) (which postulates the existence of a
constant function).

Among those Σ that have at least one constant function, any undemand-
ing Σ is least in the interpretability ordering.

(For a k-dimensional counterpart of “undemanding,” see §7.5.3 below.)

6.1.1 “Undemanding” is an algorithmic property.

There is an easy algorithm that accepts any finite set Σ of equations as input,
and halts with output 1 or 0, depending whether Σ is undemanding. We will
describe this algorithm informally.

Given Σ, it has a finite similarity type n :T −→ Z. We now consider an
arbitrary finite set K of equations of the form

Ft(x1, . . . , xn(t)) ≈ xj (5)

or of the form

Ft(x1, . . . , xn(t)) ≈ C, (6)

where our formal language has been augmented to include a single new con-
stant symbol C. For each t ∈ T , our K must include a single equation
involving Ft; that one equation must be either Equation (6) or one instance
of Equation (5)—thereby choosing a value of j in that equation.

If σ is any term in the language of Σ, the equations in K will immediately
imply either σ ≈ xj for some unique j, or σ ≈ C. For each σ ≈ τ occurring
in Σ, we may check whether σ and τ both reduce to the same xj or else both
to C. If this happens for all equations in Σ, we say that K is consistent with
Σ.

We now undertake to do this for all of the (finitely many) possibilities for
K. If one K turns out to be consistent with Σ, we may say Σ is undemanding.
Otherwise, all such K turn out to be inconsistent with Σ, in which case we
conclude that Σ is demanding.

If all the operations are for instance binary, then the number of sets K
is obviously 3|T |; we see therefore that the algorithm is exponential in |T |.
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Nevertheless, in many cases of interest |T | is small, and the algorithm is
easily carried out. The reader is invited to try his/her hand at equations
(25–26) in §7.6.2.

6.2 Not both groups and semilattices

The incompatibility of (non-trivial) compact Hausdorff spaces with lattice-
ordered groups was proved by M. Ja. Antonovskĭı and A. V. Mironov [3] in
1967. Therefore, of course, if Σ is an axiom-set for LO-groups, we will not
have A |=ctn Σ for any non-trivial finite space A. If A is also connected, we
in fact have the stronger conclusion—a consequence of J. D. Lawson and B.
Madison [33]—that A is not compatible both with group theory and with
lattice theory.

Of course, from the perspective of the present investigation, it would be
very desirable to have a stronger version of this result, where group theory
and lattice theory are replaced by lower elements of the interpretability lat-
tice. In any case we will use §6.2 as a rough guide in organizing §7 which
follows, separating group-like topological algebras from lattice-like ones. (In
§7.3, however, we find some examples that lie on the overlap.)

6.2.1 Proof of the assertion in §6.2.

In §6.2.1, all citations refer to items in Lawson and Madison [33] (1970).
Our proof (that no nontrivial connected compact Hausdorff space is com-

patible with both group theory and lattice theory) is by contradiction. We
will assume that A is a non-trivial compact connected Hausdorff space, and
that there are continuous operations ∧, ∨, · and −1 such that (A,∧,∨) is a
topological lattice and (A, ·,−1 ) is a topological group.

By compactness, (A,∧,∨) has 0 and 1. Therefore (A,∧) is certainly a
non-trivial compact connected nontrivial idempotent semigroup with 0. By
Corollary 2.12 on page 135, each maximal idempotent of (A,∨) is marginal.
Therefore A has at least one marginal element.

Marginal elements are defined in Definition 1.1 on page 129. Peripheral
elements are defined in Definition 1.2. On the bottom of page 129 we are
told that every marginal element is peripheral, with a reference to another
paper of Lawson and Madison. Also in Definition 1.2 we have that a point is
inner if and only if it is not peripheral. Therefore our space A contains one
point that is not inner.
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On the other hand, Theorem 1.6 on page 130 tells us that if A is a finite
dimensional locally compact Hausdorff space, then the set of inner points of
A is dense in A. And hence non-empty. Thus our space A has one point that
is inner and one point that is not inner.

On the other hand (A, ·,−1 ) is a topological group, and hence A is ho-
mogeneous. Therefore, either all points of A are inner or no points of A are
inner. This contradiction completes the proof.

7 A |=ctn Σ for Σ non-trivial and A given by a

finite complex.

We present essentially all the examples that we know for sure. Our rough
division into types of Σ is partly based on the results mentioned in §6.2.

7.1 Σ related to group theory.

7.1.1 Grouplike algebra on spheres.

We look at one strengthening of group theory (i.e. higher in the lattice), and
two weakenings.

The one-dimensional sphere S1 is compatible with Abelian group theory.
(The Abelian group may be modeled as the set of unit-modulus complex
numbers under multiplication, or as the set of orthogonal 2 × 2 real matri-
ces of determinant 1.) On the other hand, S3 is the space underlying the
group of unit quaternions, which is not Abelian. (R. Bott proved in 1953
that S3 is not compatible with Abelian group theory—see [10].) S7 has the
multiplication of unit octonians. With this multiplication, S7 forms an H-
space (see §3), which in fact satisfies the alternative laws (associativity on
all two-generated subalgebras). S7 does not, however, have a multiplication
forming an associative H-space (monoid), as was proved by I. M. James in
1957 (see [27]). Thus, for k any positive integer with k 6= 1, 3, 7, we have the
set inequalities

I(Sk) = I(Sk) ∩ I(S7) ∩ I(S3) ∩ I(S1) ⊂
I(S7) ∩ I(S3) ∩ I(S1) ⊂ I(S3) ∩ I(S1) ⊂ I(S1).

The four ideals are separated by H-space theory, associative H-space theory
(monoids) (or by group theory), and Abelian group theory, using the results
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cited here and in §3. (Recall that I(S1) is described near the end of §4.3.1,
and I(Sk) is described in §6.1.)

7.1.2 Other groups.

There are various compact Lie groups (orthogonal, special orthogonal, and
so on). Matrix multiplication (which is inherently continuous) is often the
basic operation. Their various underlying spaces appear to be very sparse
among the class of all compact manifolds. The underlying spaces of compact
Lie groups may be finitely triangulated (see [34] and references given there).

7.2 Σ derived from lattice theory.

7.2.1 Distributive lattices (with 0 and 1).

A real interval [a, b] has a well-known distributive lattice structure. Therefore
each simplex [a, b]n has compatible distributive lattice operations, as does any
of its sublattices. In the compact realm, every compatible lattice has a zero
(bottom) and a one (top). The compact subuniverses of ([0, 1],∧,∨, 0, 1)2

appear to be limited in their possible shapes, although a full description of
the limitations has not yet been discovered.

For the first such limitation, we note that in 1959 Dyer and Shields proved
[15] that every compact connected metric topological lattice is contractible
and locally contractible. In particular a finite graph (one-dimensional com-
plex) with a lattice structure must be acyclic.

For a further limitation on finite graphs, we note that if A is an acyclic
non-linear finite graph, i.e., a one-dimensional compact connected simplicial
complex that does not define a line segment—e.g. if A is a Y-shaped space—
then A is not compatible with lattice theory, and hence cannot be such a
subuniverse of [0, 1]2. See §7.2.4 below for further incompatibilities.

The aforementioned result, of non-compatibility between lattice theory
and an acyclic non-linear finite graph A, comes in essence from Wallace
[58], although only a weaker theorem is stated, and without proof. (See the
“Alphabet Theorem” on page 107 of [58].) We shall thus include a short
proof here, by contradiction. So suppose that A = (A,∧,∨) is a topological
lattice. Since our space A is compact, A has a 0 and a 1. Since A is not
homeomorphic to a segment, there is a point E of A such that A \ E has
at least three components S0, S1, S2, . . .SN . Clearly there is one Sk that
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contains neither 0 nor 1.
We now take P ∈ Sk; clearly P 6= E. We consider the map X 7−→ X∨P .

It maps 0 to P and 1 to 1. By connectedness, and the fact that every path
from P to 1 must pass through E, we see that our map must have E in its
range. In other words, for some X, P∨X = E. Thus P ≤ E.

A dual argument shows that P ≥ E; by anti-symmetry P = E. This is
the contradiction that establishes our result.

It is worth mentioning, for future reference (§8.2) that the lattice opera-
tions on a real interval are piecewise linear:

x∧y = x if x ≤ y; y if x ≥ y, (7)

and similarly for join.

7.2.2 One can go higher in I([0, 1]).

For this section, we let Λ0 be a finite equational axiom system for distributive
lattice theory with zero and one. For each integer n ≥ 1 we let Λn be Λ0

augmented with a unary operation symbol f and constant symbols a1, . . . , an,
and extended with the following axioms:

a1 ∧ a2 ≈ a1, a2 ∧ a3 ≈ a2, · · · , an−1 ∧ an ≈ an−1

f(0) ≈ 0, f(a1) ≈ 1, f(a2) ≈ 0, f(a3) ≈ 1, · · ·
f(1) ≈ 1 if n is even, 0 otherwise.

One easily checks that, in the interpretability lattice

Λ0 < Λ1 < · · · < Λn < Λn+1 < · · · .

(For non-interpretability of Λn+1 in Λn, we note that, modulo equational
deductions, Λn has only n+ 2 constant terms, whereas any interpretation of
Λn+1 will require n+ 3 logically distinct constant terms.)

Compatibility of Λn with a closed interval is easiest if we use the interval
[−1, 1]. Then the desired function f can be taken as the Chebyshev polyno-
mial Tn+1 of degree n+ 1. (Or one can simply take f to be piecewise linear
as specified by our equations.)

We therefore have an ω-chain of sets in the ideal I([0, 1]), going upward
from the theory of distributive lattices with zero and one (§7.2.1).
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7.2.3 Lattices (with 0 and 1).

Lattice theory lies strictly below modular lattice theory in the interpretability
lattice. Nevertheless, we do not know any space B that is compatible with
lattice theory (with or without zero and one), and yet is not compatible
with modular lattice theory. (It is possible that, for Σ = lattice theory, and
for suitably chosen A, the space of the free algebra FΣ(A) (see §5) might
be such a B. Furthermore, in [7], G. Bergman has suggested several finite
spaces that are compatible with lattice theory, but may fail to be compatible
with modular lattice theory.)

We do know a space B that separates modular lattice theory from dis-
tributive lattice theory in this manner, namely such that B is compatible
with modular lattice theory but not with distributive lattice theory. If B is
the union of three closed 2-simplices along one common edge, then B has the
announced properties. The proof, by G. Bergman and W. Taylor, appears
in [7, §3.1]. See also §9.4.7 for a more general question about the separation
of one variety from another by the compatibility relation

In the nineteen-fifties A. D. Wallace conjectured that every compact,
connected topological lattice (L,∧,∨) is distributive. This was disproved in
1956 by D. E. Edmondson [16], who gave a non-modular example6 with L
homeomorphic to [0, 1]3. (Of course this space is compatible with distributive
lattice theory.) Wallace’s conjecture holds for L = [0, 1]2 (see [2]) and for
modular lattices with L = [0, 1]3 (see [21]).

7.2.4 Semilattices (with 0 and 1).

By contrast with §7.2.1, every finite tree (see §7.2.1) is compatible with
semilattice theory—as may be seen in §3.7 of W. Taylor [48]—even semilattice
theory with 0 and 1. (And it is not hard to see from the proof that the
semilattice operation may be taken to be piecewise linear, i.e. simplicial.)

Taylor proved in 1977 (see [47]) that if A is a topological semilattice, then
the homotopy group πn(A, a) is trivial for every n ≥ 1 and every a ∈ A. (In
1965 (see [11]) D. R. Brown had obtained the same conclusion for a different
equation-set: x ∧ x ≈ x, x ∧ 0 ≈ 0 ∧ x ≈ 0. In the compact case Brown’s
result already applies to a semilattice A, since A will then have a zero.)

6G. Bergman has recently found a simpler construction of an example with these
properties—see §4.2 of [7].
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(In 1959 Dyer and Shields had proved [15] that every compact connected
metric topological lattice is contractible and locally contractible.)

7.2.5 Majority operations and median algebras.

It is well known that if (A,∧,∨) is a lattice, then the derived operation
defined by the term

m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z) (8)

satisfies the majority equations

m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x. (9)

Thus the majority equations lie below lattice theory in the interpretabil-
ity lattice, and so are compatible with the space of any topological lattice
(§7.2.3).

Moreover the majority equations are also compatible with the finite trees
mentioned in §7.2.1 and §7.2.4. The idea (due to M. Sholander in 1954—see
[43]) is very simple. Given such a tree T , for any two points a, b ∈ T , there
is a smallest connected subset containing the two, which will be denoted
[a, b]. Moreover, Sholander proved, for any three points a, b and c ∈ T , the
intersection [a, b]∩ [b, c]∩ [c, a] is a singleton. Taking its lone member as the
value of m(a, b, c), we obtain a symmetric, continuous operation m :T 3 −→ T
that satisfies Equation (9). Finally, we remark here that the m so defined on
a tree T satisfies a stronger set of equations, the axioms of median algebra—
see e.g. the 1983 treatise by Bandelt and Hedĺıková [5], or the 1980 treatise
by Isbell [26].

In fact, it was proved in 1979–82 by J. van Mill and M. van de Vel [56, 57]
that, among finite-dimensional spaces, the ones compatible with the majority
equations are precisely the absolute retracts. (They refer to a continuous
majority operation as a “mixer.”)

7.2.6 Multiplication with one-sided unit and zero.

One very weak consequence of semilattice theory with zero and one—or of
ring theory—is the following set of two equations:

x ∧ 0 ≈ 0, x ∧ 1 ≈ x.
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These equations lie quite low in the interpretability lattice; hence it is not
hard to find contractible spaces that model them. (For example see e.g.
§7.2.1 and §7.2.4.) On the other hand, as was mentioned in §3.6 of [48], it is
easy to see that if A is a path-connected finite space compatible with these
equations, then A is contractible.

7.3 Below both groups and lattices: H-spaces

H-spaces (multiplication with two-sided unit element), and associative H-
spaces (otherwise known as monoids) were mentioned in §7.1.1; their theories
lie well below group theory. It is interesting to note that both of these theories
also lie below ∧-semilattices with 1 (§7.2.4).

For example, we may let S1 = (S1, ·, e) denote the circle group, with
unit element e. We may let I = (I, ·, 1) denote the unit interval, where · is
the usual semilattice operation, and 1 is the top element, and also the unit
element for this algebra. Then S1 × I is also an associative H-space, with
two-side unit element (e, 1). One may easily check that

P = {(u, v) ∈ S1 × I : u = e or v = 0}

is a subuniverse of S1 × I. It is homeomorphic to the pointed union of the
pointed spaces (S1, e) and (I, 0). (In other words, the space P is homeo-
morphic to the letter P.) Thus the space P is, for example, compatible with
monoids. (This example appeared in [48], and is derived from work of Wal-
lace [58].)

If B is any compact metrizable space that is an absolute retract among
metric spaces, then B is compatible with H-spaces (see §3.2.3 of W. Taylor
[51]).

If A is compatible with the Mal’tsev equations, then A is compatible with
ΣH—see §7.4.3 below.

7.3.1 A mysterious theorem.

Algebraic topology has a lot to say about—and methods concerning—H-
spaces. As one sample result, we mention this:

J. R. Harper proved in 1972 (inter alia, see [22]) that if A is a finite
connected H-space, then the homotopy group π4(A) obeys the law x2 = 1.
(A = S3 is an example of such an H-space with π4(A) 6= 0.)
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7.3.2 Digression on homotopy

One may examine satisfaction up to homotopy. In the case of H-space theory,
one asks for a continuous map F : A2 −→ A, and an element e ∈ A, such
that the maps x 7−→ F (x, e) and x 7−→ F (e, x) are each homotopic to the
identity map x 7−→ x.

Many of the spaces of interest in this investigation are contractible, and
therefore model x ≈ y up to homotopy — which means that they model any
Σ up to homotopy. We therefore will not pursue this notion here, except
to report that if A is a CW-complex, and if A is compatible with H-space
theory up to homotopy, then7 in fact A is an H-space.

7.4 Σ consisting of simple equations.

If A is an absolute retract in the class of metric spaces, and if Σ is a consis-
tent set of simple equations, then A is compatible with Σ (see Taylor [51]). A
term σ is simple iff there is at most one operation symbol Ft in σ, appearing
at most once. An equation σ ≈ τ is simple iff both terms σ and τ are simple.
For example, the majority equations (9) are simple,

For absolute retracts, consult works by Borsuk [9] and Hu [24]. For
example, the finite trees defined in §7.2.1 are absolute retracts (among, e.g.,
metric spaces). Thus the result of this section extends the compatibility
results of §7.2.5.

Moreover, if Σ is a consistent set of simple equations in a finite similarity
type, and if A is an absolute extensor (see [24]) in the class of completely
regular spaces, then there is a topological algebra A = (A, . . . Ft . . .) whose
simple identities are precisely the simple consequences of Σ (see [51, Theorem
7(b)]). This is the rare case where we have some control over equations not
holding in an algebra A constructed in this report.

If Σ is a finite (or recursive) set of simple equations, and if A is a finite
(or recursive) tree, and if we know some computable (hence continuous)
operations modeling Σ on a closed interval, then there are computable (hence
continuous) operations modeling Σ on A. The method is described in §4.2
of [51]; it probably can be extended to an arbitrary absolute retract which
is a finite complex. A special case of the method is given in detail in §7.4.2
below. (For computability of real functions, see [41].)

7See Whitehead [59, Theorem III..4.7, page 117]. In fact Whitehead proves this under
assumptions weaker than what we have stated here.
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7.4.1 Minority equations on a closed interval.

As an example of simple equations, we consider the ternary minority equa-
tions

q(x, x, y) ≈ q(x, y, x) ≈ q(y, x, x) ≈ y. (10)

A closed real interval [a, b] is well known to be an absolute retract, so by §7.4
there exists a ternary operation q on [a, b] satisfying (10). We can, however,
define such an operation directly, without reference to §7.4. A minority
operation q may be defined by the following two conditions:

(i) If u ≤ v ≤ w, then q(u, v, w) = u− v + w.

(ii) q is completely symmetric in its three variables.

It is worth noting that there is a single formula defining this q, namely

q(u, v, w) = u ∧ v ∧ w − m(u, v, w) + u ∨ v ∨ w, (11)

where m is the ternary majority operation defined in Equation (8).
If A is a space homeomorphic to an interval, then of course our definition

of q may be transferred to A by laying down coordinates. Any non-linear
change of coordinates will effect the values of the resulting qA : A3 −→ A,
but Equation (10) will not be affected. Linear changes of coordinates will
not affect any values of qA.

(A very different—and more complicated—q was described in Equation
(71) of §9.3 of [50].)

7.4.2 Minority equations on a tree.

Here we will illustrate one way to satisfy the minority equations (10) on a
simple tree—as mentioned in §7.2.1 and §7.2.4 and §7.2.5. Specifically let Y
stand for the Y-shaped space that is formed by joining three closed intervals
with the amalgamation of one endpoint each. Y is an absolute retract; hence
compatible with the minority equations (10) by §7.4. We can, however, define
such an operation directly, without reference to §7.4.

Let Y1, Y2, Y3 be the three subsets of Y that can be formed by joining two
out of three of the constituent intervals. The significant facts about the Yi
are these:
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(i) Each element of Y belongs to at least two of the Yi.

(ii) Each Yi is homeomorphic to an interval, and hence has a minority
operation qi by §7.4.1.

(iii) For each i there is a continuous function pi retracting Y onto Yi.

Let m be a majority operation on Y—whose existence is assured by §7.2.5.
We now define Q :Y 3 −→ Y as follows:

Q(a, b, c) = m(q1(p1(a), p1(b), p1(c)),

q2(p2(a), p2(b), p2(c)), q3(p3(a), p3(b), p3(c))).

From points (i)–(iii) it follows easily that Q is a minority operation on Y .
As mentioned at the end of §7.4, the methods of §4.2 of [51]—a recur-

sive invocation of the methods here—will allow one to construct a ternary
majority operation on any finite tree.

7.4.3 Mal’tsev operations.

The Mal’tsev equations are

p(x, x, y) ≈ p(y, x, x) ≈ y. (12)

One may say that their study initiated the investigation of relative strengths
of equation-sets, ultimately leading to the lattice of §4.2. Equations (12)
obviously lie below the minority equations (10) in the lattice. Thus Mal’tsev
operations are found on a closed interval and on any finite tree (by §7.4.1
and §7.4.2).

Moreover, in any group (A, ·, −1), the formula

p(a, b, c) = a · b−1 · c (13)

defines a Mal’tsev operation onA. Therefore S1, S3 have Mal’tsev operations.
As a sort of hybrid example, we look at the cylinder [a, b] × S1. It has

a Mal’tsev operation as does any (necessarily closed) subset onto which the
entire space [a, b] × S1 retracts. (E.g. a belt around the cylinder that is
pinched so as to be one-dimensional in spots and two-dimensional in other
spots.)

Notice that any space A that has a Mal’tsev operation is an H-space
(§7.3): if p : A3 −→ A satisfies (12), and if e ∈ A, we may then define a
multiplication x · y = p(x, e, y). This multiplication has e as a two-sided
unit.
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7.4.4 Two-thirds minority operations.

The two-thirds minority equations are

t(x, x, y) ≈ t(y, x, x) ≈ y; t(x, y, x) ≈ x. (14)

Clearly they lie higher in the lattice than the Mal’tsev equations (12). (Strictly
higher because they are not interpretable in Abelian group theory—cf. §4.3.1.)
Equations (14) also lie above the ternary majority equations (9): p(x, y, z) =
t(x, t(x, y, z), z) defines a majority operation, as one may easily check. Equa-
tions (14) play a significant role in the study of arithmetic varieties (varieties
that are congruence-permutable and congruence-distributive)—see e.g. A.
F. Pixley [40].

Of course an interval [a, b] or a tree has a continuous two-thirds minority
operation by the general results of §7.4. One choice for t on [a, b] is this:

t(u, v, w) = u − m(u, v, w) + w,

whose form has much in common with Equations (11) and (13). For the tree
Y one may use the method of §7.4.2.

7.5 Σ defining [k]-th powers.

For each set Σ of equations, and for each k = 2, 3, . . . , there exists a set Σ[k]

with the following property: an arbitrary topological space A is compatible
with Σ[k] if and only if there exists a space B such that B |=ctn Σ and A is
homeomorphic to the direct power Bk. If Σ is finite (resp. recursive, resp.
r.e., etc.), then Σ[k] may be taken as finite (resp. recursive, resp. r.e., etc.).

From the definition (which we have skipped) it is immediate that Σ[k] ≥ Σ
in our lattice (§4). The theory Σ[k] was developed in 1975 by R. McKenzie
[37]; see also [46, pp. 268–269] or §10.1 of [50]. The connection of Σ[k] with
topological spaces was perhaps first noted in [20].

Obviously, if Γ[k] ∈ I(A), then Γ ∈ I(A) and A is a k-th power. The
converse is false,8 even when k = 2: take A to be a four-element discrete
space, and Γ to be the Σ[2] of §7.5.2 below. Then Γ ∈ I(A) and A is a
square, but Γ[2] 6∈ I(A) (for then, by §7.5.2, A would be the square of a
square, which it is not).

8This observation thanks to G. M. Bergman.
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In this context, of course, every example adduced so far in §7 yields further
examples for each k = 2, 3, . . .. If B is known to be compatible with Σ, then
A = Bk is known to be compatible with Σ[k]. In the opposite direction, we
of course need to know all possible factorizations of A as homeomorphic to
some Bk. If each such B is incompatible with Σ, then we know that A is
not compatible with Σ[k]. (This of course includes the case where no such
factorization exists.)

7.5.1 The operations of Σ[k].

Given operations F 1, · · · , F k on a set B, each of arity nk, we may define an
n-ary operation F on the set Bk as follows:

F ((b1
1, · · · , bk1), · · · ,(b1

n, · · · , bkn))

= (F 1(b1
1, · · · , bkn), · · · , F k(b

1
1, · · · , bkn)). (15)

Clearly, if B has a topology, and if each F j is continuous, then F is con-
tinuous. One may think of Σ[k] as having one such n-ary operation symbol
for each k-tuple of nk-ary term operations of Σ. More usually, we take only
these special cases as fundamental operations of Σ[k]:

H((b1
1, · · · , bk1), · · · , (b1

k, · · · , bkk)) = (b1
1, · · · , bkk); (16)

d((b1
1, · · · , bk1)) = (b2

1, · · · , bk1, b1
1); (17)

Gt((b
1
1, · · · , bk1), · · · , (b1

n, · · · , bkn)) = (F t(b
1
1, · · · , b1

n), · · · , F t(b
k
1, · · · , bkn)),

(18)

where F t (t ∈ T ) are the fundamental operations of Σ. (The other operations
(15) can formed from these.)

7.5.2 Squares—Σ empty and k = 2.

For Σ empty, Σ[2] may be axiomatized as:

H(x, x) ≈ x

H(x,H(y, z)) ≈ H(x, z) ≈ H(H(x, y), z)

d(d(x)) ≈ x

d(H(x, y)) ≈ H(d(y), d(x)).
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If A is the square of another space B, i.e. A = B2 with the product topology,
then A is compatible with Σ[2] in the following manner. We define operations
H and d on B2 via

H((b1, b2), (b3, b4)) = (b1, b4) (19)

d((b1, b2)) = (b2, b1), (20)

for all b1, . . . , b4 ∈ B. These operations are obviously continuous, and it is
easy to check by direct calculations that they obey Σ[2]. Thus B2 |=ctn Σ[2].
(Equations (19–20) are special cases of Equations (16–17) above.)

Conversely, it is not hard to prove that if A is any space with continuous
operations H ′ and d′ modeling this Σ[2], then there exist a space B and a
bijection φ : A −→ B2 that is both a homeomorphism of spaces and an
isomorphism of (A,H ′, d′) with (B2, H, d), with H and d defined as above.
(One begins by defining B to be the subspace {a ∈ A : d′(a) = a}.)

Thus this Σ[2] is compatible with A if and only if A is homeomorphic to
a square, as claimed.

7.5.3 Squares of spaces.

If B is any space and F i is a 2n-ary operation on B (i = 1, 2), then—as a
special case of (15)—one has an n-ary operation F defined on A = B2 as
follows:

F ((b1
1, b

2
1), · · · , (b1

n, b
2
n)) = (F 1(b1

1, · · · , b1
n), F 2(b2

1, · · · , b2
n)). (21)

If each F i is continuous, then F is continuous.
For most spaces B, there are many continuous operations on B2 besides

those described in Equation (21), and there is little or no real restriction on
the equation-sets that may be compatible with B2. But for certain spaces,
notably those described at the start of §6.1, the compatible equation-sets are
very limited.

In Theorem 2 of [49] it was proved that if B is one of these spaces, such
as a figure-eight or a sphere Sn (n 6= 1, 3, 7), then a set Σ is compatible
with B2 only if Σ is interpretable in operations of type (21), where each
F i is either a coordinate projection function or a constant. Such a set Σ is
called 2-undemanding. There is an algorithm to determine if a finite set is
2-undemanding.
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The reader may easily imagine the corresponding definition for k-unde-
manding sets. Then a k-th power such as (Sn)k (n 6= 1, 3, 7) is compatible
with Σ only if Σ is k-undemanding.

7.5.4 Below squares in the interpretability lattice.

Let Γ consist of the single equation

(x ? y) ? (y ? z) ≈ y. (22)

In the context of §7.5.2, if we define

x ? y = d(H(y, x)), (23)

then it is not hard to check that Equation (22) follows from the equations
Σ[2] of §7.5.2. In other words, Γ is interpretable in Σ[2] (where Σ is empty).
Therefore, by §7.5.2 and by §4.3, if A is the square of another space B, then
A = B2 |=ctn Γ.

In fact, if we apply the definition (23) to our operations d and H of §7.5.2,
we obtain the following concrete definition of a continuous ? modeling Γ on
any square B2:

(b1, b2) ? (b3, b4) = (b2, b3). (24)

(And the fact that (B2, ?) |= Γ can be reconfirmed by an easy calculation.)
Thus (22) is an example of an equation that is 2-undemanding (§7.5.3)

but is not undemanding (§6.1).
(This discussion of Γ and ? is due in part to T. Evans [17]. Equation (22)

was also discussed on pages 202–203 of [49].)

7.5.5 A special case: A = Rk.

We mentioned at the start of §7.5 that one might need to know all topological
factorizations of A as a power Bk in order to assess the truth of B |=ctn Σ[k].
There is one case where all such factorizations are known, namely A = Rk.
If Rk is homeomorphic to Bk for some B, then B is homeomorphic to R [50,
Lemma 29] (bassed on F. B. Jones and G. S. Young [28]). (In other words,
topologically the space Rk has unique k-th roots.)

The remarks in §7.5 now yield that, for any finite k and any set Σ of
equations, Σ[k] is compatible with Rk if and only if Σ is compatible with R.
(This result first appeared as [50, Corollary 30].)
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Few other k-th power spaces are known to have unique k-th roots, and so
the result stated here cannot be generalized very far. It does, however, hold
for powers [0, 1]k.

7.5.6 The [k]-th root of a theory.

It is possible to turn the tables and define a theory k
√

Σ such that an arbitrary
space A is compatible with k

√
Σ if and only if the space Ak is compatible with

Σ. The theory k
√

Σ was defined by R. McKenzie in 1975 (see [37]); it is also
briefly discussed on page 68 of [20].

We will exhibit k
√

Σ for k = 2 and Σ the theory of H-spaces (binary
multiplication with two-sided unit element, §7.2.6). Here is 2

√
Σ; it has two

constants and two 4-ary operations:

f1(x1, x2, c1, c2) ≈ x1

f2(x1, x2, c1, c2) ≈ x2

f1(c1, c2, x1, x2) ≈ x1

f2(c1, c2, x1, x2) ≈ x2.

It should be clear that if operations f i, ci (i = 1, 2) satisfy these equations
on A, then one may define an H-space operation on A2 via

F ((a1, a2), (a3, a4)) = (f 1(a1, . . . , a4), f 2(a1, . . . , a4))

for all a1, . . . , a4 ∈ A. The general method of defining k
√

Σ should be clear
from here.

Obviously in general I(A) ⊆ I(Ak), and the reverse inclusion may fail;
for example, if Σ = ∆[k] for some ∆ and if A is not homeomorphic to a k-th
power, then ∆[k] ∈ I(Ak) but ∆[k] 6∈ I(A) (for ∆ taken as, say, the empty
theory). In terms of this section, we may equivalently say that if A |=ctn Σ,
then A |=ctn k

√
Σ, but not always conversely.

J. van Mill exhibited [54] a space V such that V is not compatible with
group theory, but V 2 is compatible. In other words group theory lies in I(V 2)
but not I(V ). Nevertheless, the space V seems far from being a finite space,
and we do not expect examples of this type to play a big role in the analysis
of compatibility for finite spaces.

If Σ is a set of simple equations (see §7.4), then k
√

Σ is equivalent to Σ
in the interpretability lattice, which entails that I(Ak) = I(A) and that

27



Ak |=ctn Σ implies A |=ctn Σ. This theorem was proved in 1983 by B. Davey
and H. Werner [14], and about the same time by R. McKenzie [unpublished].
A later proof appears in [20, Prop. 39, p. 69].

7.6 Miscellaneous Σ.

7.6.1 Exclusion of fixed points.

We consider the equation-set

F (x, x, y) ≈ y; F (φ(x), x, y) ≈ x.

If A is a space of more than one element that has the fixed-point property
(each continuous self-map has a fixed point), then, applying that property
to a given φ, we clearly see that these equations are not compatible with
A. Such spaces include the closed simplex of each finite dimension (Brouwer
fixed-point Theorem).

The equations also fail to be compatible with S1—which obviously does
not have the fixed-point property. Indeed, in §4.3.1, S1 |=ctn Σ if and only
if, in our lattice, Σ lies below the theory of Abelian groups. Thus φ will be
interpreted as a unary Abelian group operation. All such operations have 0
as a fixed point, and so the fixed-point argument may be applied again.

It is easy to find operations that show R to be compatible with the equa-
tions, but in fact I do not know of any finite complex that is compatible.

In the reverse direction, one may note that in 1959 E. Dyer and A. Shields
proved [15] that if A is a finite-dimensional compact connected space com-
patible with lattice theory, then A has the fixed-point property.

7.6.2 One-one but not onto.

We consider the equations

F (x, y, 0) ≈ x, F (x, y, 1) ≈ y, (25)

ψ(θ(x)) ≈ x, φ(θ(x)) ≈ 0, φ(1) ≈ 1, (26)

which first appeared in [48, §3.17]. Clearly this set is demanding (see §6.1.1).
In a non-singleton model A = (A,F , ψ, θ, φ, 0, 1), Equations (25) imply that
0 6= 1. The next equation tells us that θ is one-to-one, and the last two tell
us (using 0 6= 1) that the range of θ is not all of A. Every one-one continuous
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self-map of the sphere Sn (n = 1, 2, . . .) maps onto Sn (for example, by the
Invariance of Domain Theorem). Therefore these equations are incompatible
with spheres Sn. (For most spheres, we already knew this, by §6.1. For S1,
S3 and S7, the result is new in this section; for all spheres, the proof here is
much easier than the proof referenced in §6.1.)

On the other hand, it is not hard to satisfy the equations with continuous
operations on the closed interval [0, 1]:

0 = 0, 1 = 1, F (a, b, c) = (1− c)a+ cb (27)

θ(a) = a/2, ψ(a) = 2a ∧ 1, φ(a) = (2a− 1) ∨ 0. (28)

We would also like to see that Equations (25–26) can be satisfied on [0, 1]
with (continuous) piecewise linear operations. The operations in Line (28)
are already piecewise linear; we need only add a piecewise linear definition
for (a new) F that satisfies (25). The reader may check that the following
definition suffices:

F (a, b, c) =

{
a ∨ 2c if c ≤ 1/2

b ∨ (2− 2c) if c ≥ 1/2.

A slight variant of Equations (25–26) replaces Equations (25) with the
equations of §7.2.6. These equations serve, again, to separate 0 from 1 in
any algebra of more than one element. They are satisfied on [0, 1] by using
(28) together with the ordinary meet operation on [0, 1].

7.6.3 Entropic operations on [0, 1].

In 1974 Fajtlowicz and Mycielski (see [18]) considered continuous affine com-
binations on [0, 1], i.e. functions that have this form:

Fα(a, b) = αa+ (1− α)b, (29)

one such operation for each α ∈ [0, 1]. Such an operation is easily seen to
satisfy the equations

Fα(x, x) ≈ x, Fα(Fα(x, y), Fα(u, v)) ≈ Fα(Fα(x, u), Fα(y, v))

The first of these is the idempotent law; the second is the entropic law. They
also proved that if α is transcendental, then ([0, 1], Fα) satisfies no equations

29



other than the logical consequences of idempotence and entropicity. These
equations are obviously undemanding (see the algorithm in §6.1.1), and hence
not interesting for the present investigation.

On the other hand, they proved that if α is algebraic, then ([0, 1], Fα)
satisfies some equations beyond the logical consequences of idempotence and
entropicity. Regrettably, I don’t know which values of α yield an equa-
tion set that is demanding. (E.g. when α = 1/2, we have the equation
Fα(x, y) ≈ Fα(y, x), which renders the equations demanding. I don’t know
other examples.)

One may further consider two or more Fα in the same term. For instance,
for any α and β we clearly have the mixed entropic law

Fα(Fβ(x, y), Fβ(u, v)) ≈ Fβ(Fα(x, u), Fα(y, v)).

Moreover, one can consider affine combinations with more than two variables.
We do not emphasize such combinations, since each of them can be formed
by concatenating binary affine combinations. For example, given positive
reals µ, ν, λ that sum to 1, if we let α = µ+ ν and β = µ/(µ+ ν), then we
have

Fα(F β(x, y), z) = µx+ νy + λz.

7.6.4 Some twisted ternary operations on [0, 1].

Let Rθ : R3 −→ R3 be the rotation of 3-space through angle θ, whose axis
is the line joining (0, 0, 0) to (1, 1, 1). (For example, when θ = 2π/3 this
rotation cyclically permutes the three positive coordinate axes.) Further, let
m be the ternary majority operation on R that is defined by Equation (8) of
§7.2.5. Here we consider the composite ternary operation on R, defined by

F θ = m ◦Rθ.

As established in [50, §9.4], the interval [0, 1] is a subuniverse of (R, F θ),
and moreover the operation F θ satisfies the equations

Fθ(x, x, x) ≈ x, Fθ(x, y, z) ≈ Fθ(z, x, y).

Moreover, the derived operation

pθ(a, b) = F θ(a, a, b)
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turns out to be an affine combination on [0, 1] (as defined in Equation (29)).
Therefore pθ obeys the idempotent and entropic equations of §7.6.3, plus
further equations if the coefficients of pθ are algebraic. These easily translate
to further laws for F θ.

We do not have a clear idea of how high in the lattice these examples
might lie.

8 The operations needed for the examples in

§7.

Somewhat surprisingly, the concrete examples of compatibility provided through-
out §7 require operations only of a very unsophisticated design. (A few ex-
amples above, such as the P in §7.3, are originally formed as products. In
such a case, the following analysis should be seen as applying to the two
factors separately.)

8.1 Multilinear Operations

Let A be a topological subspace of some power Rk. For α ∈ R and K a subset
of {1, . . . , n} × {1, . . . , k} we consider continuous functions F :An −→ R of
the form

F ((x(1,1), . . . , x(1,k)), . . . , (x(n,1), . . . , x(n,k))) = α
∏

(i,j)∈K

x(i,j)

uniformly over An. We usually restrict our attention to sets K with the
property that for each i ∈ {1, . . . , n} there is at most one j with (i, j) ∈ K.
For such a set K, we will say that this F , or any linear combination of such
F ’s for varying α and K, is multilinear.

If k = 1 (in which case, each j = 1) we may say that F is linear, resp.
bilinear, if each K is a singleton, resp. has two elements.

Then for an operation F :An −→ A ⊆ Rk, we say that F is multilinear
(resp. linear) iff each of its components is multilinear (resp. linear).

Given a continuous operation F : An −→ A, if the space An may be
triangulated so that on each simplex F is multilinear, then we may say that
F is piecewise multilinear. Similarly piecewise linear, piecewise bilinear, and
so on.
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8.2 Piecewise linear operations seem to suffice on [0, 1].

Let us first look at I([0, 1]), the sets Σ known to be compatible with the
interval [0, 1]. In fact, piecewise linear operations suffice for all the concrete
examples included in §7. The piecewise linearity is made explicit in Equation
(7) of §7.2.1, in points (i) and (ii) of §7.4.1 and in §7.6.2; elsewhere it may
be easily inferred from the context.

In detail, the operations in §7.2.1 are piecewise linear, by Equation (7).
The equations in §7.2.2 can be modeled either with piecewise linear functions
or with Chebyshev polynomials (among infinitely many possibilities). The
equation-sets below lattice theory—semilattices in §7.2.4, majority opera-
tions in §7.2.5 and 0,1-multiplication in §7.2.6—are a fortiori satisfied with
piecewise linear operations on [0, 1]. And then the minority operation q de-
fined in Equation (11) of (§7.4.1), the Mal’tsev operation of §7.4.3, and the
two-thirds minority operation t of §7.4.4 are linear combinations of operations
defined earlier, and hence still piecewise linear.

Finally, it is not hard to check that the entropic operations in §7.6.3, and
the twisted operations in §7.6.4 are all piecewise linear. As for the composite
ring-lattice operations in §7.6.2, we gave two ways to define F , one piecewise
linear, and one not.

In the first sentence of §7.4 we cited only an existence proof for opera-
tions on [0, 1] to make A compatible with Σ. To constructively provide such
operations would require solving the word problem for free Σ-algebras, and
then analyzing the topological structure of FΣ([0, 1]).

Σ[0,1] obviously defines a huge and complicated mathematical structure;
complete knowledge of it may be impossible (unless, for example, we are so
lucky as to find a simple finite generator for I([0, 1])). We do, however, know
something about it. In several places—notably §7.2, §7.4 and §7.6—we have
reported on positive findings of [0, 1] |=ctn Σ for various sets Σ. Each of these
reports amounts to a description of a finite piece of Σ[0,1].

8.3 Some further piecewise bilinear operations on a
closed interval.

In this speculative section we note the possibility that for A a closed interval
of the real line, there may exist Σ ∈ I(A) that is higher than any other such
Σ that we have considered so far in this account.
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In this context it works best to consider the interval [−1, 1]. The opera-
tions we will consider, beyond the ordinary join ∨ and meet ∧ and constants
0 and 1 that we have already considered, are these:

(i) Ordinary multiplication, x · y

(ii) Truncated addition: x� y, to mean [(x+ y) ∧ 1] ∨ (−1)

(iii) Shrinking: F (x) to mean9 x/3.

Besides the distributive-lattice equations for ∧,∨, and commutativity and
associativity for x·y, the equations satisfied by our operations include10 these:

x� y ≈ y � x; (F (x)� F (y))� F (z) ≈ F (x)� (F (y)� F (z)) (30)

(F (x)� F (x))� F (x) ≈ x (31)

x · (F (y)� F (z)) ≈ (x·F (y)) � (x·F (z)) (32)

(x ∨ 0) · (y ∧ z) ≈ (x ∨ 0) · y ∧ (x ∨ 0) · z (33)

((x ∨ 0)� y)� (z ∨ 0) ≈ (x ∨ 0)� (y � (z ∨ 0)) (34)

((x ∨ 0)� y)� (z ∧ 0) 4 (x ∨ 0)� (y � (z ∧ 0)) (35)

F (x ∧ y) ≈ F (x) ∧ F (y) (36)

(x · x) ∨ 0 ≈ x · x (37)

(x ∧ 0) · (y ∧ z) ≈ ((x ∧ 0) · y) ∨ ((x ∧ 0) · z) (38)

and the duals of (33–36). (The dual of (37) is not included.) For the notation
in (35): α 4 β means α∨β ≈ β. Probably the careful reader can find further
interesting examples.11

For our context, the question is whether the operations defined here on
[−1, 1] satisfy an equation-set that lies higher in the interpretability lattice
than (or incomparable with), say, the equations already seen in §7.2.2. Equa-
tions (30–36) do not have this property: they are (jointly) interpretable in
distributive lattice theory by defining F (x) to be x, and defining both x� y
and x·y to be x∧y. This interpretation does not work for the set of Equations
(30–38); we do not know the location in the lattice of this set.

9The 3 is somewhat arbitrary here.
10We thank George M. Bergman for Equations (35) and (38).
11For example the list could be extended by adding 1 (or any other constants), and

adding laws satisfied by such constant(s).
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8.4 Multilinear maps define many group operations.

The groups on S1, S3 and S7 (see §7.1.1) all proceed from coordinate systems
(pairs, quadruples or octuples of real numbers). The product in S3, say, of
(x1, x2, x3, x4) and (y1, y2, y3, y4) has four components, each of which is a
bilinear function of the xi and the yj—a linear combination of the sixteen
products xiyj. Products in S1 and S7 are calculated similarly. In all three
groups, inverses are calculated by a form of conjugation, which is linear.

The matrix groups (§7.1.2) involve the ordinary product of two N × N
matrices; in the product, each entry is a bilinear function of the entries in the
two given matrices. In dealing with unitary matrices, the inverse is simply
conjugation, which is linear. For more general non-singular matrices, one
will also require the operation of calculating inverses, which can be seen as
the calculation of many determinants, followed by non-zero division. Each
determinant may be calculated as a multilinear function of the columns.

8.5 Point operations.

Operations such as those defined in Equations (19–20) of §7.5.2 were termed
point operations by Trevor Evans in [17]. Another point operation may be
seen in Equation (24). The definition is that our space is a direct power, and
each coordinate of an F -value is determined as one of the input coordinates.
Obviously point operations are multilinear in the sense of §8.1.

More generally, if each coordinate of an F -value is determined as one of
the input coordinates or a constant, then we have operations that can model
the k-undemanding equations in the third paragraph of §7.5.3.

The operation of Σ[k] defined in Equation (15) of §7.5.1 may be seen as a
hybrid of Evans’ pure point operations, and the basic operations of the root
variety Σ. If the basic operations F i of §7.5.1 can be taken as multilinear,
then the constructed operation F defined in Equation (15) will be multilinear
as well.

8.6 Operations of arity 4 and higher.

None of our concrete examples mentions an operation of arity 4 or higher. (Of
course simple equations (§7.4) can involve operation symbols of any arity.)
We therefore do not know of any significant role played by N -ary operations
for N ≥ 4. For example, we do not know whether, for each N ≥ 4, there
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exists a (finite) space A such that any generator of the ideal I(A)) (§4.3)
must include an operation symbol of arity ≥ N . (In fact we do not even
know whether this holds with N = 3; some of our examples involve ternary
operations, but in some or all cases they might be dispensable.)

9 Outlook and questions.

From known examples of the compatibility relation A |=ctn Σ, and from the
many instances in which the relation is known to fail, it may be possible
to catalog or classify the possibilities, at least for some finite spaces A (i.e.
spaces homeomorphic to the realization of a finite simplicial complex) and
for some finite Σ. Or at least to formulate a conjecture as to what is possible.

9.1 Topological models of a given theory Σ.

It may be difficult to characterize or enumerate the finite models of a given
Σ. The overall difficulty should be apparent from the surprising results sur-
rounding H-spaces (§7.1.1).

Moreover, there seems to be little structure to the collection (among finite
complexes) of all topological groups, say, or all topological semilattices, etc.
Algebraically, the collection is a category and a variety, and products are
of some use—e.g. the product of two finite complexes is a finite complex.
But subalgebras and homomorphic images of finite complexes are not usually
finite complexes.

There are, of course, a few exceptional cases where the topological spaces
compatible with Σ can be expressly described or classified. Such are for ex-
ample the squaring equations of §7.5.3 (and analogous k-th power equations),
and also the majority operations of §7.2.5.

9.2 The theories compatible with a given space A.

In a few places—such as §7.5.3 and §4.3.1—we have seen a space A for which
the compatible theories Σ can be described or enumerated, such as A = S1.
For general A, however, the task eludes us.

More precisely, we are asking for some description of the ideal I(A) of §4.3
and §4.3.1. We thus have the lattice-theoretic structure to help formulate a
description. In particular, we know (§4.3.1) that I(A) is principal. The task
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here will be to find a generator, or generating family, that is (in some sense)
small and easily understood.

For a relatively simple space like [0, 1] or its finite powers, it may be
possible to refine our understanding of I(A). It seems interesting that all
the known theories compatible with [0, 1] are very simple (or lie below some
simpler compatible theory). This points either to an inherent simplicity of
I([0, 1]), or to a large misapprehension on the part of those who have studied
it. Hopefully, the former.

9.3 The theories compatible with any finite space.

Let I be the union of the ideals I(A) for all finite complexes A. By §6.2
it is not an ideal, but it is down-closed. Remarkably, it again seems that
everything we know to be in I is relatively simple, or at least lies below a
fairly simple set of equations. The upper boundary of I may be easier to
define than the boundaries of an individual I(A). (We have no conjecture as
to a possible form.)

9.4 Specific questions.

9.4.1 Thoroughness of §7.

Does §7 include, at least implicitly, all the known examples of equation-sets
Σ that hold on a finite topological space A?

(In saying “implicitly,” we allow for example that Σ might lie below some
theory mentioned in our text, or that A might be a direct product or a finite
power.) (And of course, this could change with time; again please let the
author know of any new discoveries.)

9.4.2 Completeness of §7.

Does §7 include, at least implicitly, all equation-sets Σ that hold on a finite
topological space A?

In other words, we are asking about the down-set I described in §9.3. The
answer here may surely be “no,” even after §9.4.1 may have been corrected.
It may, however, be true that we are close to a full knowledge of I.
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9.4.3 What is I =
⋃
{ I(A) : A any finite complex } ?

For example, Does there exist a recursive sequence Σ0, Σ1 . . . (with each Σn

a finite set of equations) such that Σ ∈ I if and only if for some n, Σ ≤ Σn

in the interpretability lattice?

9.4.4 What operations are needed for I?

For each Σ ∈ I (as defined in §9.4.3), do there exist a finite complex A and
continuous piecewise multilinear operations F t on A such that (A,F t)t∈T |=
Σ ?

We suspect the answer here is “no,” but we have no counterexample.
If not, does there exist some reasonable enlargement of the category “piece-

wise multilinear” for which the answer is yes?

9.4.5 Algorithmic questions: fixed space.

Given a fixed finite space A, does there exist an algorithm that inputs a finite
set Σ of equations, and outputs whether A |=ctn Σ?

Given a fixed finite space A, is the set of all finite Σ with A |=ctn Σ
recursively enumerable?

(We assume that one can work out a language to code a set of equations.)
In special cases, an algorithm for A |=ctn Σ exists and is implicit in what

we have already written. For A one of the spaces of §6.1, the algorithm would
check whether Σ is undemanding. For a k-th power of one of those spaces, the
algorithm would check whether Σ is k-undemanding (§7.5.3). For the sphere
S1, one would check whether Σ can be modeled by linear operations with
integer coefficients (see §4.3.1). For the majority of finite spaces, however,
the answer is unknown. In fact, we know of no finite A for which we can say
that the answer to either question is negative. By contrast, for A = R, we
do know that there is no algorithm (see [50]).

(The proof in [50] of the algorithmic undecidability of R |=ctn Σ seems to
require a non-compact space, where some periodic functions can be found to
live.)

9.4.6 Algorithmic questions: fixed theory.

For a fixed set Σ of equations, does there exist an algorithm to decide, for a
finite complex A, whether A |=ctn Σ?
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Is the set of such A recursively enumerable?
We advise the reader that some very simple questions on finite complexes—

such as the question of the simple connectedness of a 2-complex—can fail to
have an algorithmic solution. (See [36] or [42] for examples.)

9.4.7 How well can A |=ctn Σ separate two theories?

We restate a question from §7.2.3:
Does there exist a space A that is compatible with lattice theory but not

with modular lattice theory? Is there a finite space A with this property?
Obviously the corresponding question may be asked for any two Σ that

are distinct in the interpretability lattice. The specific question posed here
remains open, and may be taken as an indicator of how little we know in
this area. For a similar question, that of separating modular lattice theory
from distributive lattice theory, an example is known. If B is the topological
space formed by joining three triangles (closed 2-simplices) along a single
common edge, then B is compatible with modular lattice theory, but not
with distributive lattice theory. The proof—to which the present author
contributed—may be found in §3.1 of G. Bergman [7]; see especially Theorem
7 there.

9.4.8 Description of I([0, 1])?

(i) Does §7 give a thorough description of all known Σ compatible with
[0, 1]?

(ii) Is there a finite Σ that generates the ideal I([0, 1]) of all theories
compatible with the interval [0, 1]? If so, attempt to exhibit a specific finite
generator Σ.

(iii) If so, will the Σ that is implicit in §7 suffice for this purpose? Would
it help to include the operations shown in §8.3?

(iv) Can one recursively enumerate a set of finite Σ’s that collectively
generate the ideal I([0, 1])?

(v) In question (ii) or (iv), can one find such a Σ (or Σ’s) that can be
modeled with piecewise linear operations on [0, 1]?

(vi) In question (ii) or (iv), can one find such a Σ (or Σ’s) whose opera-
tion symbols all have arity ≤ 3? What about ≤ 2?
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9.4.9 Description of F ([0, 1])?

Describe the filter F ([0, 1]) of all theories not compatible with the space [0, 1].
If possible, frame this description as a weak Mal’tsev condition [45].

As mentioned in §4.3.4, F ([0, 1]) is not a Mal’tsev filter.

9.4.10 Other spaces A.

The questions in §9.4.8 may be asked for any space A, and we consider them
to be on the table, especially for A a finite complex. (“Linearity” may require
a specified coordinate system.) With a few exceptions (such as A = S1), we
do not expect them to be any easier than the questions for A = [0, 1].

If A is product-indecomposable, then the questions of §9.4.9 may also be
asked for A.

9.4.11 How dense are the non-trivial finite complexes?

Among those complexes that have at most m simplices, of dimension at most
n, what fraction are compatible with some demanding theory (§6.1)?

We expect a meaningful answer only in the limit as m, or as m and n
together, approach infinity. The precise method of counting complexes (sim-
ply by raw data, or by isomorphism types of complex, or by homeomorphism
types of space, for example), is certainly part of the problem. We would not
be surprised if the limiting fraction turns out to be zero.
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Państwowe Wydawnictwo Naukowe, Warsaw, 1967, 251 pages.

[10] R. Bott, On symmetric products and the Steenrod squares, Annals of
Mathematics 57 (1953), 579–590.

[11] D. R. Brown, Topological semilattices on the two-cell, Pacific Journal
of Mathematics 15, 1965, 35–46.

[12] Tae Ho Choe, The breadth and dimension of a topological lattice, Proc.
Amer. Math. Soc. 23 (1969) 82–84. MR0248760

[13] A. H. Clifford, Connected ordered topological semigroups with idempo-
tent endpoints, I. Transactions of the American Mathematical Society
88 (1958), 80–98.

[14] B. Davey and H. Werner, Dualities and equivalences for varieties of
algebras, Colloq. Math. Soc. János Bolyai 33 (1983), 181–275.

[15] E. Dyer and A. Shields, Connectivity of topological lattices, Pacific
Journal of Mathematics 9 (1959), 443–448.

[16] D. E. Edmondson, A nonmodular compact connected topological lattice,
Proceedings of the American Mathematical Society 7 (1956), 1157–1158.

40



[17] T. Evans, Products of points — some simple algebras and their identi-
ties. Amer. Math. Monthly 74 (1967), 362-372.

[18] S. Fajtlowicz and J. Mycielski, On convex linear forms. Algebra Univer-
salis 4 (1974), 244–249.

[19] W. M. Faucett, Compact semigroups irreducibly connected between two
points; Topological semigroups and continua with cutpoints. Proceedings
of the American Mathematical Society 6 (1955), 741–756.
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