
Mathematics 3210
Spring Semester, 2005
Homework notes, part 9
April 22, 2005
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We are given congruent angles at A and A′. (We let α denote their common
angle.) We take ` and `′ to be the enclosing lines, respectively, of ∠A and
∠A′, and we take B and B′ to be the feet, respectively, of A on ` and of A′

on `′. We wish to show that AB ∼= A′B′.
Consider the two limit triangles 4AB`1 and 4AB`2, where `1 and `2 are

the two ends of `. Their respective angles at B are congruent, and they
share the side AB; hence by ASL (Exercise 34.10, page 317), their angles

∠BA`1 and ∠BA`2 are congruent. In other words,
−→
AB bisects the angle at

A. Similar reasoning shows that
−→
A′B′ bisects the angle at A′. Thus the four

smaller angles in the diagram (two at A and two at B) are all congruent one
to another. (Two of them are denoted α/2 in the diagram.)

From the diagram we see immediately that

α(AB) =
α

2
= α(A′B′),

where α(·) denotes the angle of parallelism. It is now immediate from Propo-
sition 40.1(b) that AB ∼= A′B′.
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40.3 Shortest segment between two lines.
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Segment AB is the unique segment perpendicular to both lines ` and m,
with A ∈ ` and B ∈ m. For C any point in ` and D any point in m, we need
to prove that AB < CD. Let F be the foot of the perpendicular from C to
m. Now CFAB is a Lambert quadrilateral, and hence ∠FCA is acute, by
Exercise1 34.2 on page 316.

Finally
CD > CF > AB,

with the first inequality from Euclid2 I.16 and I.19, and the second inequality
from Proposition 34.2, page 307, applied to the quadrilateral CAFB.

40.6 Completion of trilimit triangle.
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We are given two lines ` and m, limit-parallel in a given direction (to the
left in the diagram). We need to find n that is limit-parallel both to the
other end of ` and to the other end of m. Let O be an arbitrary point on `,
and let m′ be a ray originating at O that is limit-parallel to m in a direction
opposite to the given direction on `.

1We skipped 34.2, but it is very easy; if interested, one could insert its proof here. If you
wish to avoid Lambert quadrilaterals, you could extend CFAB to a Saccheri quadrilateral
with midline AB—by adding appropriate points C′, F ′ with C ∗A ∗ C′ and F ∗B ∗ F ′.

2These propositions of Euclid are confirmed for our context on page 101 of the text.
Euclid I.16 is the Exterior Angle Theorem, and Euclid I.19 says that the larger side is
opposite the larger angle.
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So consider ∠`Om′. By Corollary 40.6, this angle has an enclosing line
n. That is, there exists a line n such that n is limit-parallel to ` in one
direction and limit-parallel to m′ in the opposite direction. By transitivity
of limit-parallelism (Proposition 34.11 on page 314), n is limit-parallel to m.

40.5 Parallel–orthogonal.
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We are given limit-parallels ` and m (with limit parallelism to the left in
the diagram), and need to find n that is limit-parallel to (the opposite end
of) ` and perpendicular to m.

Let A and B be two points on `. Let F and G be the feet of A and B.
respectively, on m. There are unique points A′ and B′ on AF and BG,
respectively, such that A∗F ∗A′, B ∗G∗B′, AF ∼= FA′ and BG ∼= BG′. We
omit the easy proof (using, e.g., the Exterior Angle Theorem) that A′ 6= B′.
Thus there is a unique line `′ joining A′ and B′. Now by Exercise 40.6
(established just above) there is a line n that is limit-parallel at one end
to ` and at its other end to `′. This n has the desired property of being
limit-parallel to `. It remains only to prove that n meets m at right angles.

We first note that points on ` get arbitrarily far from m, while points
on n get closer and closer to m, so some points of n are on the `-side of
m. Likewise, some points of n are on the `′-side of m. Therefore n and m
intersect at a point P . Moreover n contains some points N that are on the
`-side of m and some points N ′ that are on the `′-side of m; choose one of
each for future reference.

If the quadrilaterals ABFG and A′B′FG are divided into triangles (with
the segments AG and A′G), then a familiar argument—which we omit—will
establish that ∠XBA ∼= ∠XB′A′. Now consider the limit triangle 4BX`n
comprising the segment BX, and the rays of ` and n that are limit-parallel,
and consider the corresponding limit triangle 4B′X`′n on the opposite side
of m. By the above-mentioned congruences, 4BX`n and 4B′X`′n have
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congruent angles at B and B′, and their two segments are congruent: BX ∼=
B′X. Therefore, by ASL (Exercise 34.10), ∠BXN ∼= ∠B′XN ′.

We skip the straightforward proof that B is in the interior of ∠GXN and
B′ is in the interior of ∠GXN ′. From this, we may add congruent angles,
to obtain ∠GXN ∼= ∠GXN ′. Since these are supplementary angles, each is
a right angle.

Alternate proof for Exercise 40.5.

=======================
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Let A be an arbitrary point on ` and F its foot on m. Choose K on m so

that
−→
FK is opposite to the ray that is limit-parallel to `. Let r be the ray

emanating from F that is limit-parallel to ` and is not contained in m. The
existence of the right angle at F tells us that ∠KFr is acute. There is a
unique ray r′ on the opposite side of m from r, emanating from F , such that

∠KFr′ ∼= ∠KFr. Clearly
−→
FX is interior to ∠Frr′, and bisects it.

By Proposition 40.6, ∠Frr′ has an enclosing line, which we shall denote
n. Clearly n is limit-parallel to `; thus we need only show that n meets m
at right angles. Clearly n contains points on either side of m, and so m and
n intersect at a point X. In Exercise 40.2 we saw that the bisector of an
angle meets the enclosing line at right angles. Therefore, m meets n at right
angles.

Comments on 40.5.
1. In the alternate proof, you could also use Corollary 40.7 instead of

Proposition 40.6.
2. The first proof here is the one that I presented in class on Wednesday

4/20. The alternate proof is one that I discovered on Thursday. Too bad I
didn’t have it soon enough to present on Wednesday; it is certainly easier.
But, mathematics is like that, especially when it is taken as living rather
than dead. Some students discovered this without my help!
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40.7 Distance from ` to a limit-parallel.
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Given ` and m limit-parallel, there is, by Exercise 40.5, a line n orthogonal
to m at a point X, and limit-parallel to the opposite end of `. We let α1, α2

denote the ends of ` that are limit-parallel, respectively, to m and to n. As
we know, ` is uniquely determined by joining α1 and α2; in other words it
is uniquely determined as the enclosing line of ∠α1Xα2.

As for AB, let m′ be a line orthogonal to AB at B, and let `′ be limit-
parallel to m′ through A (towards an end that we shall call β1). A further
application of Exercise 40.5 yields a line n′ orthogonal to m′ at a point X ′,
and limit-parallel to the opposite end of `′ (which we shall call β2).

We now work with a new diagram which shows the three lines `, m and
n, but which does not ostensibly show the line `:

LLLLL
C

D
X mα1

α2

r2
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n

We choose D on line m so that XD ∼= X ′B and such that
−→
XD has end α1.

We then choose C on the `-side of m, so that
−→
DC is orthogonal to m at D,

and so that DC ∼= BA. We claim that C and D are the required points on `
and m. We certainly have CD ∼= AB and we certainly have the right angle
at D. It only remains to show that C is on `.

Let r1 =
−→
Cα1 and r2 =

−→
Cα2. We will show that r1 and r2 are collinear.

Consider the limit triangles 4α1CD and 4β1AB. They have one pair of
angles and one side congruent, and hence by ASL (Exercise 34.10) they
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also have ∠α1CD ∼= ∠β1AB. On the other hand, consider the limit trian-
gles 4α2CX and 4β2AX

′. From the two congruent triangles 4ABX ′ and
4CDX, we have CX ∼= AX ′ and ∠X ′Aβ2

∼= ∠XCα2. And by the same
congruent triangles, ∠BAX ′ ∼= ∠DCX.

Thus the three angles at C are congruent, respectively, to the three angles
at A. In the latter case, the three angles lie along the line `′, and hence span
a straight angle. Hence the same is true of the three angles at C. Thus in
fact rays r1 and r2 join to form a line joining ends α1 and α2. The only such
line is `, and hence C ∈ `.

40.8(a) Midlines of a trilimit triangle.
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By Exercise 40.5, there is a unique line r that is limit-parallel to ` and n and
that meets m orthogonally; we let P denote the point of intersection of r
and m. Let σr denote reflection (page 152) in r. Now σr fixes P and r, and
preserves the right angle at P , so it must map m into itself. Moreover σr
preserves limit-parallelism, so it must map ` to a line that is limit-parallel to
σr[r] = r and to σr[m] = m (but on the opposite side of r). Thus σr[`] = n.
Further reasoning of this sort shows that in fact σr interchanges the two
lines ` and n. But, in fact, we already know (from Exercise 34.11) that
reflection in the midline interchanges ` and n. It is an easy consequence of
rigid-motion theory that r is the midline of ` and n.

Let the other two midlines be s and t as indicated in the diagram. In
particular let us consider the midline r and the two half-planes determined
by the midline s. Let H1 be the half-plane containing P , and let H2 be the
opposite half-plane. Clearly all of ` lies in H2. Going out r in the direction
of limit-parallelism with `, by Exercise 40.7, one finds points on r arbitrarily
close to points on `, and moreover their distance to ` decreases as one move
further out r, by Exercise 35.8. It is an easy consequence (we omit the
details) that r contains points in H2. Since r contains points in both half-
planes H1 and H2, r must meet s. In fact this argument is valid for any
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two of the midlines, and so we may conclude that each pair of midlines has
a point of intersection.

Now consider a point Q where two of the midlines meet, say r∩ s = {Q}.
Let F , G and H (not shown in the diagram) be the feet of the perpendiculars
from Q to `, m and n, respectively. Since Q ∈ r, we have QF ∼= QH;
since Q ∈ s, we have QF ∼= QG. By transitivity of congruence, we have
QG ∼= QH. Therefore Q lies on all three midlines, and is equidistant from
`, m and n.

Comments on the proof of 40.8(a).
1. Here I freely used the rigid motion σr, and properties of σr. One can

do the problem without rigid motions, but it is harder. So I decided to
write up this (and 40.8(b) below) with rigid motions, as an illustration of
the importance of this theory.

Rigid motions are defined (on page 149) as motions that preserve collinear-
ity, betweenness, segment congruence and angle congruence. Their existence
in a Hilbert plane is established in Proposition 17.4 on page 153. We have
used them sporadically and informally, but we simply didn’t have time to do
the full theory. (Well, we could have traded those Euclidean constructions
early in the semester for some work in §17, but those were important also.)

It is of course essential to our argument here that rigid motions also
preserve limit parallelism. The easiest way for us to see this is with Exercise
34.9. In principle, one can remove rigid motions from any proof. One simply
needs to view Proposition 17.4 and Exercise 34.9 as subroutines that could
be spelled out as often as necessary in the proof. Thus a replacement proof
would contain some triangle congruences and some use of Exercise 34.9.

2. In fact the author could have brought rigid motions into greater promi-
nence. Several things in §§34–40 are easier to work out if one has rigid
motions as a tool. As a good example of this, look for a simplification of
Exercise 40.7 (just above) with rigid motions.
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40.8(b) Congruence of all trilimit triangles.

=============================
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So let us compare the trilimit triangle of 40.8(a) with another trilimit trian-
gle 4`′m′n′, for which we have shown the three midlines, labeled as before
except with primes. Our objective is to show that P ′Q′ ∼= PQ.

As we saw in Part (a), the reflection σr′ fixes r′ and Q′, interchanges `′

and n′, and interchanges the two ends of m′. From this it is easy to see
that σr′ interchanges s′ and t′. From this it is immediate that the six angles
shown surrounding Q′ are congruent in pairs: the two on the left, the two in
the center, and the two on the right. (Clearly σr′ interchanges each of these
pairs.) Similar reasoning applies to σs′ and σt′ , and now transitivity yields
that all six angles around Q′ are congruent. Thus each is an angle of 60◦.

Thus α(P ′Q′) = 60◦, where α(·) denotes the angle of parallelism; clearly
the same reasoning applies to the trilimit triangle in Part (a), and so α(PQ) =
60◦. Now P ′Q′ ∼= PQ by Proposition 40.1(b).
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40.8(c) A right angle inside a trilimit triangle.

α β γ
δ` •

P

G

F
n

m

Let P be an arbitrary point of `, with foot F on n and foot G on m. The
figure contains segments PF and PG plus a ray originating at P that is
limit-parallel to m and n. The four angles α, β, γ and δ are arrayed about
P as indicated in the diagram. Clearly

α = α(PF ) = β and γ = α(PG) = δ,

where α(·) denotes the angle of parallelism. Thus

2(β + γ) = α + β + γ + δ = 180◦

β + γ = 90◦.

Thus ∠FPG is a right angle.


