
Mathematics 3210
Spring Semester, 2005
Homework notes, part 7
April 1, 2005

Note for today. Sometimes one’s work can be expedited by taking time
out to make a fresh diagram, leaving behind the constructs (points and
lines, say) that have already served their purpose. We do this twice in our
discussion of 34.11 just below.

34.11 Bisector of a pair of limiting parallel rays.
Working with the book’s diagram, one should begin by stating why the

point C exists. . . . do this . . . . Then let G (not shown here) be the
foot of the perpendicular from C to AB. Certain congruent triangles (not
shown here) immediately imply that CE ∼= CG ∼= CD . . . supply the details
. . . . We no longer require points A, B, G, so they are not included in this
diagram:
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Here Cc is an altitude of the isosceles triangle 4CDE; hence the two angles
at C are congruent to each other.

We now need only remember that ∠DCc ∼= ∠ECc, that the angles at
D and E are right angles, and that CD ∼= CE. We no longer require the
segment DE, so now we work with this diagram:
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(1)

We begin by considering a point H on
−→
Da , and a point K on

−→
Eb such

that DH ∼= EK. From these simple conditions, it is evident that

4CDH ∼= 4CEK,(2)
1
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by SAS (the angles being the right angles at D and E).

Let us now prove, by contradiction, that H 6∈
−→
Cc and K 6∈

−→
Cc . Without

loss of generality, suppose that H ∈
−→
Cc . (This contradictory situation is

not depicted.) Thus
−→
CH =

−→
Cc , and so, by (2),

∠ECK ∼= ∠DCH = ∠DCc ∼= ∠ECc.

Thus
−→
CK =

−→
Cc , by the uniqueness part of Axiom C4. Moreover CK ∼= CH

by (2), and hence K = H by the uniqueness part of Axiom C1. Thus rays
−→
Da and

−→
Eb have a point in common, in contradiction to our assumption

that lines Da and Eb are parallel. This contradiction establishes our claim

that H 6∈
−→
Cc and K 6∈

−→
Cc .

Therefore, all points of
−→
Da lie on one side of line Cc, and all point of

−→
Eb lie on the opposite side.

We now attend to the two specific parts of Exercise 34.11:

34.11(a) —
−→
Da and

−→
Cc are limit parallels. We just proved that

the two rays do not intersect. For limit parallelism, we consider a ray
−→
DX

that is interior to ∠EDa. We are given that
−→
Da and

−→
Eb are limit-parallel,

and hence
−→
DX meets

−→
Eb at a point Y . By the above results, D and Y are

on opposite sides of Cc. Therefore
−→
DX meets Cc. This is exactly what is

required for limit parallelism

34.11(a) — alternate proof. For limit parallelism, one could instead
use Remark 34.12.1, which says that if a line stays completely within ∠A and
within ∠B, then it too is limiting parallel. (See book for diagram and precise
statement.) What one needs to apply 34.12.1 is our statement, above, that
−→
Da and

−→
Eb lie on the opposite sides of Cc.

34.11(b) —
−→
Eb is the reflection of

−→
Da in Cc. We return to the

situation depicted in Diagram (1), and in particular to an arbitrary pair of
points H and K with DH ∼= EK.

We also have DC ∼= EC and ∠D ∼= ∠E, from (2). Thus ∠DCH ∼=
∠ECK and CH ∼= CK . By angle subtraction, ∠HCJ ∼= ∠KCJ . Thus
4HCJ ∼= 4KCJ , by SAS. Thus HJ ∼= KJ , and the supplementary angles
at J are congruent to each other—and thus are right angles.

In other words, the segment HK has line Cc as its perpendicular bisector.
Thus, by definition, K is the reflection of H in Cc (and vice versa). In other

words, we have shown that, starting with an arbitrary point H ∈
−→
Da , its

Cc-reflection is a certain point K ∈
−→
Eb . And of course, we obviously have
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the same congruences if we begin with K ∈
−→
Eb and then take H ∈

−→
Da

to satisfy DH ∼= EK. Therefore, of the two rays
−→
Da and

−→
Eb , each is the

reflection of the other in Cc.

Comments on Exercise 34.11. 1. In our proof of 34.11(b), we hardly
used the hypothesis that Da is limiting parallel to Eb. (We did however use
it somewhat covertly; can you tell where?) This of course raises the question
whether it’s really necessary. Indeed, it is not! In fact for any two lines m
and n, there exists a line ` such that m is the reflection of n in `. (We
have proved this for m limit-parallel to n, and it is very easy to prove if m
intersects n. The remaining case—neither intersecting nor limit parallel—is
nicely covered by Theorem 40.5 on page 377.)

2. Exercise 34.11 concerns the concurrence of two angle bisectors and a
so-called midline. For the concurrence of three midlines, see Exercise 40.8
on page 385—which will be assigned for April 22. Obviously one could also
discuss the concurrence of one angle bisector and two midlines, although I
didn’t happen to find this stated as an exercise.

3. The part about right angles at J (see Part (b) above) is essential. Ne-
glecting to prove this was the most prevalent mistake on this week’s home-
work.

4. For Part (a) many forgot to prove the “limit” part—any ray at a
sharper angle will meet the other line. Remember, on the last homework
writeup I said, “Never forget . . . .”

35.6 Three small angles in a triangle.

A
B
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b
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We begin with the diagram from Exercise 35.3 (of the previous set). In that
exercise it was proved that if we begin with any angle at A, we can find B

on
−→
Ab so that Bc is parallel to Aa and the angle at B is a right angle. So,

we apply that exercise to find such a figure with the angle at A given as 1
2ε.

We now apply the recursive procedure that is outlined in the proof of

Theorem 35.4 (diagram top of page 322). Briefly, E0 is any point on
−→
Bc ,
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and E1 is chosen so that E0E1
∼= AE0. Then recursively, En+1 is chosen

so that EnEn+1
∼= AEn. As described in the proof of Theorem 35.4, the

angles at the points En continue to decrease at least by a factor of 2. In the
presence of Archimedes’ Axiom (one of the assumptions for Exercise 35.6),
we may conclude that ∠AEnB < ε for some n. Moreover, as confirmed in
the proof of Theorem 35.4, we have ∠BAEn < 1

2ε.

A

B EnE′n

OOOOOOOOOOOOOOOOOOOOOOOOOO

ooooooooooooo_ _ _ _ _ _ _ _ _ _ _ _

For the final phase, we use Axiom C1 for the existence of E′n with En ∗
B ∗ E′n and with BE′n

∼= BEn. By SAS, 4ABEn ∼= 4ABE′n. It is now
immediate that all three angles of 4AEnE′n are less than ε.

Comments on Exercise 35.6.
1. To get small angles requires a huge triangle. To get the angle small at

A requires proposition 35.5, whose proof, one may recall, involves essentially
doubling 4ABC until its defect exceeds 2RA. Then the construction of 35.4
requires the successive construction of points En, each one approximately
twice as far from B as the previous.

2. On the next assignment (April 15), we will have Exercise 39.6, which
asks you to prove that, in the Poincaré model, if α, β and γ are any three
angles with sum < 180◦, then there exists a triangle whose angles are α, β
and γ. This is a stronger result in that it replaces inequalities with equalities.
It is, however, a weaker result, in that it holds (so far) for the Poincaré model
only. (Ultimately, it can be proved from the axioms of hyperbolic geometry.)

35.9 If distances decrease, the lines are limit-parallel.

A

B

P

Q

P ′

Q′

X
X ′�������������
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//a
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c
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We are given rays
−→
Aa and

−→
Bb that lie on the same side of AB, and do not

meet. We assume that the perpendicular distance from P ∈
−→
Aa decreases

as P moves along the ray away from A. In other words,

If P, P ′ ∈
−→
Aa with A ∗ P ∗ P ′, then P ′Q′ < PQ,(3)

where Q and Q′ are the feet, respectively, of P and P ′ on Bb. We claim

that (3) implies that
−→
Aa is limiting parallel to

−→
Bb .

For a proof, we assume that the two rays are not limit-parallel, and work
toward a contradiction to (3). By Proposition 34.10 (on symmetry of the

limiting-parallel relation), we may assume that
−→
Bb is not limit-parallel to

−→
Aa from B. Therefore the real limit-parallel from B, which we will denote
−→
Bc , lies interior to ∠ABQ. Let P be a point on

−→
Aa , and let Q be its foot

on Bb. We omit the proof that P and Q are on opposite sides of Bc. Hence
there is a point X on Bc with P ∗X ∗Q.

Now, according to Proposition 35.6 (this is the book’s hint), the perpen-

dicular distance from points on
−→
Bc to Bb can be made as large as we wish.

In particular, there exists X ′ with B ∗X ∗X ′ such that X ′Q′ > PQ (where
Q′ is the foot of X ′ on Bb). (One does not perceive X ′Q′ > PQ in the
diagram, but after all this is a contradictory situation and hence hard to

draw.) Now since
−→
X ′c is limit parallel from X ′ to Aa, and since the ray

opposite to
−→
X ′Q′ lies inside ∠PX ′c, it must intersect

−→
Pc . In other words,

there exists P ′ with A ∗ P ∗ P ′ and P ′ ∗X ′ ∗Q′. Thus P ′Q′ > X ′Q′ > PQ,
and we have a violation of (3). This contradiction complete the proof of the
Exercise.

Comments on Exercise 35.9.
1.Theorem 40.5 on page 377 (mentioned already above) will provide an-

other proof of 35.9. It tells us that if the two lines are not limit-parallels,
then they have a common perpendicular. Then one may quickly invoke
Proposition 34.4 (and its remark 34.4.1) to see that distances do not in fact
always decrease.

2. A couple of students tried to prove this using Exercise 35.8 (its con-
verse). It is almost always fruitless to prove a result from its converse. Here’s
why. Suppose we know (1) A =⇒ B, and we wish to prove (2) B =⇒ A.
First of all, all that (1) can do for us is establish B; but B is what we’re
assuming in (2), so invoking (1) would be a waste of time. It gets worse.
The only way we could invoke (1) is to somehow have A available; but once
we have A available, our proof of (2) is complete, so there would be no need
to invoke (1).



6

What does sometimes work, sometimes not always, is to take a known
proof of (1) A =⇒ B, go through its steps, and turn each of those steps
around, one by one, into its converse. 35.9 is probably not one of these
cases.

37.2 Compass construction of the inverse point. The first step of the
construction (a circle with center A) yields AP ∼= AO ∼= AQ. Since P,Q ∈ Γ,
we have OP ∼= QO. Finally, the last two circular arcs in the construction
yield OP ∼= PA′ and A′Q ∼= QO. Thus we have the configuration

A
O

α
α A′

α
α

P

α

Q

α

_____
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with

OP ∼= PA′ ∼= A′Q ∼= QO and AP ∼= AO ∼= AQ.(4)

Let us first prove that O, A and A′ are collinear. Consider 4POA and

4QOA. They are congruent by (4) and SSS, and thus
−→
OA bisects the large

angle at O. By similar reasoning (with 4POA′ and 4QOA′), the ray
−→
OA′

also bisects the large angle at O. Therefore
−→
OA =

−→
OA′. (We have not

expressly proved that angle bisectors are unique, but we could easily do it
now, in at least two different ways. We skip the details, for lack of time.
If interested, write up a proof and show it to me.) Thus O, A and A′ are
collinear. This fact allows us to see that ∠POA = ∠POA′, and so on.

Now consider 4POA and 4POA′. Each is an isosceles triangle, by (4),
and they in fact have ∠POA = ∠POA′ as a base angle in common. There-
fore all the base angles are congruent, as noted in the figure with α. (In
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fact, α also occurs three times in the lower half of the diagram, in accor-
dance with the two SSS congruences that we mentioned above. We noted
these three α′s in the lower part of the diagram, but we don’t need them.)

Now two isosceles triangles with the same base angle are similar in Eu-
clidean geometry, and that certainly applies to 4POA and 4POA′. Being
similar, they have the same leg:base-ratio, and so we have:

OA

OP
=

OP

OA′
.

This is the same as the first equation on page 335; as there, it immediately
yields OA ·OA′ = r2, which is the defining condition for A′ to be the inverse
of A in the circle Γ.

37.3 Circular inverse of a line, simple construction.

A

B

O

C ′

C

`

Y
X

Γ

γ

VVVVVVVVVVVVVVVVVVVVVVVV

�������

Let X be the foot of O on ` = AB, and let Y be the point, other than O,
where OX meets γ. More generally, take C to be any point on AB, and
then define C ′ to be the point, other than O, where OC meets γ. We shall
prove that C ′ is the inverse of C with respect to the circle Γ.

We skip the proof that OY is a diameter of the circle γ. (It is straight-
forward Euclidean geometry.) We can then see that 4Y C ′O is inscribed in
a semicircle of γ, and hence that ∠Y C ′O is a right angle. (Euclid III.31.)
Now consider 4Y C ′O and 4CXO. They share the angle at O, and each
has a right angle; hence they are similar. Comparing ratios of corresponding
sides yields

OC

OX
=

OY

OC ′
,
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which in turn yields

OC ·OC ′ = OX ·OY.(5)

Now the important thing about Equation (5) is that it hold for every C
along the segment AB. In particular, it holds when C = A, in which case
C ′ is also equal to A. In this case, (5) yields

r2 = OA ·OA = OX ·OY,(6)

where r is the radius of Γ. Now (5) and (6) yield

OC ·OC ′ = r2,

which is the defining equation for C ′ to be the inverse of C in the circle Γ.
Afterthought. I only wrote up the case X ∗ C ∗ A. There is a slightly

different picture, and different argument, for X ∗A ∗ C.

37.14 Cross-ratio preserved under projectivity.

(a). The trigonometric formula.

O

Q

A

α
B

β
P
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The hint is to use the (strictly Euclidean1) law of sines:

sin γ
c

=
sin δ
d

,(7)

where c and d denote two sides of a triangle, and γ and δ are the angles
opposite those sides, respectively. Since we seek information about the cross-
ratio, which involves segments AP , AQ, BP and BQ, we shall apply (7) to
the four triangles4OAP , 4OAQ, 4OBP and4OBQ—in each case taking
the segment of interest together with O as a third vertex.

1There is a corresponding law that applies in hyperbolic geometry—we don’t need it
here, and we probably won’t get to it during the semester, but you can find it as Exercise
42.6 on page 411.
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Of course, the question immediately arises2: to which angles and sides
in these triangles shall we apply (7)? Looking at the form of the desired
conclusion, we see that no angles besides αP , αQ, βP and βQ appear in the
final answer. To make any other angles drop out, some cancelation must
occur; so angles must be used twice. Thus it’s a good bet to try using α
twice and β twice (each occurs in two of our triangles). Once one has a clear
idea of what to do, the calculation is easy:

Four applications of (7) yield
sinαP
AP

=
sinα
OP

;
sinαQ
AQ

=
sinα
OQ

;
sinβP
BP

=
sinβ
OP

;
sinβQ
BQ

=
sinβ
OQ

.

Looking at the form of the desired answer, we algebraically revise each of
these four equations, obtaining

sinαP =
AP · sinα

OP
;

1
sinαQ

=
OQ

AQ · sinα
;

1
sinβP

=
OP

BQ · sinβ
; sinβQ =

BQ · sinβ
OQ

.

If we now multiply these four equations, we have immediate cancellation of
sinα, sinβ, OP and OQ, yielding

sinαP sinβQ
sinαQ sinβP

=
AP ·BQ
AQ ·BP

= (AB,PQ),(8)

the desired cross-ratio.

(b). Preservation of the cross-ratio. Equation (8) applies both to
(AB,PQ) and to (A′B′, P ′Q′). However the angles αP , αQ, βP and βQ
are the same as the corresponding angles for A′, B′, C ′ and D′. Hence
(AB,PQ) = (A′B′, P ′Q′), by (8).

Comment on Exercise 37.14. To my mind, this is an example of a lovely
and elegant piece of mathematics. It gives a surprising result, and upon
first seeing that result, one could imagine that the calculations might be
very complex. The emphasis was on finding just the right thing to cal-
culate, and on calculating it as economically as possible. Contrary to the
popular imagination—of a mathematician writing ever longer and messier
equations—the true mathematician earnestly pursues an elegant way of get-
ting to the answer as smoothly as possible.

2This entire paragraph is merely commentary on how we decided which triangles to
use. From a purist point of view, such comments are irrelevant to a formal proof: once
you have a proof, it’s a proof, and its correctness doesn’t depend on how you arrived at
it. If, however, you are tying to explain things and share ideas, such commentary can be
very worthwhile.


