
Mathematics 3210
Spring Semester, 2005
Homework notes, part 6
March 18, 2005

Please note that, as always, these notes are really not complete without
diagrams. I have included a few, but the others are up to you.

34.4 AAA in semi-hyperbolic geometry. For this exercise we take
semi-hyperbolicity in this simple form: every triangle has positive defect.
We are given ∠A ∼= ∠A′, ∠B ∼= ∠B′, and ∠C ∼= ∠C ′. If any pair of
corresponding sides are congruent, then the proof may be finished by ASA.
So let us assume that congruence holds for no pair of corresponding sides,
and derive a contradiction.

Without loss of generality, we shall assume that A′B′ < AB. Let us use

Axiom C1 to locate a point B′′ on
−→
AB and a point C ′′ on

−→
AC such that

AB′′ ∼= A′B′ and AC ′′ ∼= A′C ′. By SAS, we have 4AB′′C ′′ ∼= 4A′B′C ′.
Since AB′′ ∼= A′B′ < AB, we have A ∗B′′ ∗B.

We claim we also have A ∗C ′′ ∗C. If not then we would have B′′ and C ′′

on opposite sides of BC, so line BC would meet line B′′C ′′ at a point which
we shall call G. Since A ∗ C ∗ C ′′, ∠ACB is and exterior angle to 4GCC ′′.
Thus ∠ACB > ∠AC ′′G = ∠AC ′′B′′. On the other hand, we already proved
that4AB′′C ′′ ∼= 4A′B′C ′, and hence ∠ACB ∼= ∠A′C ′B′ ∼= ∠AC ′′B′′. This
contradiction establishes our claim that A ∗ C ′′ ∗ C.

Thus lines B′′C and B′′C divide 4ABC into three triangles: 4AB′′C ′′,
4B′′BC ′′, and 4BC ′′C. The first of these three has the same angles as
the whole triangle 4ABC, and hence the same defect; by additivity of
defect, the other two triangles have zero defect. This contradicts the fact
(mentioned above) that in this context all triangles have positive defect.
This contradiction completes the proof of AAA.

34.5 Infinitely many parallels in semi-hyperbolic geometry. Let us
recall that in Exercise 7.4 we proved that every line has infinitely many
points. I neglected to remark on it at the time, but in fact a close scrutiny
of the proof reveals that we really proved this: every ray has infinitely many
points.

So now, let us be given a line ` and a point1 P 6∈ `. (Assuming a semi-
hyperbolic plane; in other words, assuming the hypothesis of the acute angle)
we shall construct infinitely many parallels to ` through P . Let F be the foot

1After writing this up I noticed that I have called the point P , where Hartshorne calls
it A. I trust this is not too hard to sort out.
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of the perpendicular from P to `. Let
−→
FA be one of the two rays contained

in ` and originating at F . For each G ∈
−→
FA r {F}, we define PG to be the

point that is uniquely defined by these three conditions: (i) PG is on the
P -side of `; (ii) the line GPG meets ` at right angles; (iii) GPG ∼= FP . (The
unique existence of PG follows from Axioms C1 and C4.) Finally, we define
mG to be the line joining P and PG:

F ` G
A

PGP mG

�
�
�
�
�
� ________________________

(Thus FGPPG is a Saccheri quadrilateral with right angles on line ` and
acute angles at P and PG.)

We have already seen that the top and bottom lines of a Saccheri quadri-
lateral are parallel (since each is perpendicular to the midline (not de-
picted)). Thus for each G, mG is a parallel to ` through P . As we remarked

above, there are infinitely many points on
−→
FA, and so to complete the con-

struction of infinitely many parallels to ` through P , it will suffice to show
that G 6= H implies mG 6= mH—in other words, that the correspondence
G 7−→ mG is one-to-one.

Suppose, for a contradiction, that G 6= H and mG and mH form a single
line m:

F ` G
A

H

PGPHP m

Thus we have three collinear points, P , PH and PG, with FP ∼= GPG ∼= HPH
(where F , G and H are the feet of the respective perpendiculars to `). As we
saw in Exercise 33.7(a) (or in Proposition 34.4(b)), this configuration leads
to the hypothesis of the right angle (i.e. the semi-Euclidean hypothesis).
We have, however, assumed either the semi-elliptic or the semi-hyperbolic
hypothesis (acute angles or obtuse angles in Saccheri quadrilaterals). Hence
we have a contradiction, and mG 6= mH is proved.
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34.5, other methods. There are actually lots of methods for this, several
of which involve Saccheri quadrilaterals in some way. But here’s a non-
Saccheri proof that seems easier than the one above (no need to appeal to
33.7(a) or 34.4(b)):

F ` G
A

PGP mG

�
�
�
�
�
� ________________________

In place of the three conditions mentioned above, we now use (i) PG is on
the P -side of `; (ii) the line GPG meets ` at right angles; (iii) GPG meets
mG = PPG at right angles. (The third condition changed.) The right
angles at PG and G tell us that mG is parallel to `. No two G give the same
line mG, for if they did, we would immediately have a rectangle . . . you
should include a diagram of this . . . and of course there are no rectangles in
semi-hyperbolic geometry. Thus, as before . . . write out the details . . . the

infinitely many points G on
−→
FA give us infinitely many lines mG.

34.9 ASAL. We are given AB ∼= A′B′, ∠ABb ∼= ∠A′B′b′, ∠BAa ∼= ∠B′A′a′

and
−→
Aa limiting parallel to

−→
Bb . We wish to prove that

−→
A′a′ is limiting

parallel to
−→
B′b′.

We first prove, by contradiction, that
−→
A′a′ ‖

−→
B′b′. If not, then

−→
A′a′ meets

−→
B′b′ at a point Q′:

Q

A

B
����������M M M M M M M M M

--a

b Q′

A′

B′
����������

**
a′

b′

By Axiom C1, there is a point Q on
−→
Bb with BQ ∼= B′Q′. Moreover, we are

given that AB ∼= A′B′ and ∠ABQ ∼= ∠A′B′Q′; hence 4ABQ ∼= 4A′B′Q′,
by SAS. Thus

∠BAQ ∼= ∠B′A′Q′ = ∠B′A′a′ ∼= ∠BAa

(where the last congruence was one of our assumptions). By the uniqueness

part of Axiom C4,
−→
AQ and

−→
Aa are the same ray; in other words Q lies on
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−→
Aa . This contradiction (to our assumption that

−→
Aa ‖

−→
Bb ) completes the

proof of
−→
A′a′ ‖

−→
B′b′.

We now prove that
−→
A′a′ is a limiting parallel to

−→
B′b′. To this end, let

−→
A′D′ be a ray interior to ∠B′A′a′. We need to prove that

−→
A′D′ meets

−→
B′b′.

Q

A

B
����������M M M M M M M M M

D --a

b Q′

A′

B′
����������M M M M M M M M M

D′ --
a′

b′

By Axiom C4, there exists D interior to ∠BAa such that ∠BAD ∼=
∠B′A′D′. Since

−→
Aa is a limiting parallel to

−→
Bb , there exists Q that lies on

the two rays
−→
AD and

−→
Bb . By Axiom C1, there exists a point Q′ on

−→
B′b′

such that B′Q′ ∼= BQ. We are given that AB ∼= A′B′ and that ∠ABQ ∼=
∠A′B′Q′. Thus 4ABQ ∼= 4A′B′Q′, by SAS. From this we deduce that

∠B′A′Q′ ∼= ∠BAQ = ∠BAD ∼= ∠B′A′D′.

By the uniqueness part of C4,
−→
A′D′ and

−→
A′Q′ are the same ray; in other

words, Q′ lies on
−→
A′D′. This is therefore the desired point of intersection of

−→
AD and

−→
Bb .

34.10 ASL. We are given ∠BAa ∼= ∠B′A′a′, AB ∼= A′B′,
−→
Aa |||

−→
Bb and

−→
A′a′|||

−→
B′b′. We need to prove that ∠ABb ∼= ∠A′B′b′.

A

B
����������

--a
P

f f f f f f f f f f

b

A′

B′
����������

--
a′

P ′

f f f f f f f f f fD′

b′

We shall assume, by way of contradiction, that ∠ABb < ∠A′B′b′. By def-
inition of “<,” there is a point D′ interior to ∠A′B′b′ such that ∠ABb ∼=
∠A′B′D′. Since

−→
A′a′ is limiting parallel to

−→
B′b′, we know that

−→
B′D′ meets

−→
A′a′ at a point P ′. By Axiom C1, there exists P on

−→
Aa with AP ∼= A′P ′. We

are given BA ∼= B′A′ and ∠BAP ∼= ∠B′A′P ′. Hence 4BAP ∼= 4B′A′P ′
by SAS. Thus

∠ABP ∼= ∠A′B′P ′ = ∠A′B′D′ ∼= ∠ABb.
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By the uniqueness part of Axiom C4,
−→
BP and

−→
Bb are the same ray. From

this we see that
−→
Bb meets

−→
Aa at P , in contradiction to the fact that

−→
Bb and

−→
Aa are parallel rays. This contradiction completes the proof that

∠ABb ∼= ∠A′B′b′.

Slight twist on the proof of 34.10. It works just as well to locate the

point P on
−→
Bb , with BP ∼= B′P ′. As before, one gets 4BAP ∼= 4B′A′P ′

by SAS. (But they’re not the same two sides as before, and it isn’t the same
angle!). Then C4 is applied again (but not to the same rays as before).

Comment on the importance of Exercise 34.10. If we speak in the
context of measured segments and measured angles, then 34.10 may be
paraphrased as follows: for configurations comprising two limiting parallel
rays and a transversal segment—of length a, meeting the rays at angles α
and β as indicated below—the quantities a and α determine β.

A

B

α

β���������������

a
--a

b

In other words, some relationship must hold between a, α and β. One might
of course seek to represent this relationship mathematically. One might
say that non-Euclidean geometry reached its maturity when Bolyai and
Lobachevskĭı proved (independently) that

tan
α

2
tan

β

2
= e−a/L.(1)

Here L is the length of the segment that corresponds to angles of α = 90◦

and β = 40.359 . . .◦. (In other words, in our observed universe, L is a
hitherto unknown, and inconceivably large, astronomical distance.) I can’t
find (1) in Hartshorne, but it is closely related to the formula2 that appears
in Proposition 39.13 on page 364 and again in Proposition 41.9 on page
396. (In the first instance (§39), it is proved in a single model of hyperbolic
geometry; in the second instance (§41), it is proved from the axioms of
hyperbolic geometry. Obviously the latter context yields a stronger result.)

Notice also this: once one has (1) available (which for us won’t be for a
long time), then Exercise 34.10 is immediately obvious.

2The µ in Hartshorne’s formula is a sort of näıvely constructed exponential function.
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A further comment about Exercise 34.10 is that it represents an extension
of SAA-congruence to the limiting case where one of the two angles is, so to
speak, a zero angle.

Comment on the proofs of 34.9 and 34.10. Never lose sight of the
fact that limit parallelism has two components: (1) simple parallelism in
the form of non-intersection, and (2) limit parallelism, which is to say that
any ray at a smaller angle is not parallel. Both (1) and (2) must appear in
any proof that involves limit parallelism in any essential way, such as 34.9
and 34.10. There is, however, a subtle difference in these two examples. In
34.9 we are proving that a certain pair of rays are limit parallels. Thus in
34.9, (1) and (2) were two things that we needed to prove, and they were
in fact proved separately, one at a time. On the other hand, in 34.10 limit
parallelism appears only in the hypothesis; the conclusion of 34.10 involves
something else (a certain congruence of angles). In this case there is only
one thing to prove, but along the way we make use of one instance of (1)
(as given) and one instance of (2) (as given).

35.1 Triangle of small defect. Let 4ABC be any triangle. By Exercise
7.6, there exists a point D with A ∗ D ∗ C. Standard arguments (we have
been through them before) yield the non-collinearity of A,B,D and the
non-collinearity of B,C,D. Additivity of defects (Lemma 34.8) says that

δ(ABC) = δ(ABD) + δ(BCD).

Therefore one of the two new triangles 4ABD and 4BCD has defect ≤
1/2δ(ABC). In other words, for every triangle, there is another triangle
with no more than half the defect of the original triangle. Repeating this
construction n times yields: for every triangle 4ABC, there is a triangle
4DEF such that

δ(DEF ) ≤ 1
2n
δ(ABC)(2)

Now, given ε > 0, we invoke Archimedes Axiom for the existence of n such
that

1
2n
δ(ABC) ≤ ε,(3)

and let 4DEF be a triangle that satisfies (2). It is now evident from (2)
and (3) that 4DEF has defect < ε.
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35.3 Parallel ray with arbitrary vertex angle.

A
B

a

b
�����������������������

P

We are given an angle comprising rays
−→
Aa and

−→
Ab . We need to findB ∈

−→
Ab

so that the perpendicular to Ab at B is parallel to Aa. If ∠aAb is obtuse, we

replace
−→
Aa by its opposite ray. This has no affect on the conclusion (since

lines Aa and Ab have not changed), but it allows us to work with an angle
that is acute or a right angle.

The contrapositive of Proposition 35.5 says this: In a Hilbert plane with
(A), if (P) fails then Legendre’s axiom fails for every α. The blanket as-
sumption for Exercises 35 includes (A) and the negation of (P); hence we
may conclude that Legendre’s axiom fails for the angle at A. In other words,
there exists a point P in the interior of ∠aAb such that no line through P
meets both sides of the angle. Let B be the foot of the perpendicular from
P to Ab. Since ∠aAb is acute, the Exterior Angle Theorem tells us that

B ∈
−→
Ab .

Now consider the line PB. It meets one side of our angle (namely
−→
Ab );

hence, by the way we chose P , it does not meet
−→
Aa . On the other hand,

it also does not meet the ray r opposite to
−→
Aa , for the following reason. If

there is a point G lying on both r and PB, consider 4ABG. It has a right
angle at B and an obtuse or right angle at A. This violates Euclid I.17 (Any
two angles of a triangle are less than two right angles).3 Thus PB is the

required line meeting
−→
Ab at right angles and not meeting Aa.

Comment about student answers to Exercise 35.3. I read the papers
before I had worked out my own answer for 35.3, and I had not yet noticed
the part about making sure one begins with an acute angle. Thus I neglected
to mention anything about this on people’s papers. It’s a minor point, but
something does have to be said. For example if you begin with an obtuse

3For it to fit precisely in his system, Hartshorne requires a slight rewording of I.17; see
pages 101–102. Nevertheless, the sense is the same.
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angle, then B, taken as the foot of an almost random point P , may easily

fail to lie in
−→
Ab .

35.8 The distance decreases along a limiting parallel ray. The blan-
ket assumption for the Exercises of §35 is that (A) holds and (P) does not.
It then follows easily from Propositions 35.2 and 35.4 that we have “the hy-
pothesis of the acute angle,” in other words, the upper angles of a Saccheri
quadrilateral are always acute.

A

B

P

P ′
_________ Z

R′

Q Q′ b
������������������� 44`

a

  
  

  
  

  
  

 
44

��
��
��
��
��
�

Suppose that P, P ′ ∈ Aa, with A ∗ P ∗ P ′, and that Q and Q′ are the feet
of P and P ′, respectively, on line b. We must prove P ′Q′ < PQ. Supposing
the desired conclusion to be false, namely assuming that P ′Q′ ≥ PQ, we
shall derive a contradiction to the assumption that Aa|||Bb.

Since P ′Q′ ≥ PQ, there exists R′ with Q′R′ ∼= QP and with Q′ ∗R′ ∗ P ′
or R′ = P ′. Thus QQ′PR′ is a Saccheri quadrilateral, and hence ∠PR′Q′

is acute. It then follows that ∠PP ′Q′ is acute, for one of two reasons: if
Q′ ∗ R′ ∗ P ′, then by the Exterior Angle Theorem; and if R′ = P ′, then
∠PP ′Q′ = ∠PR′Q′. Thus ∠aP ′Q′ > RA.

Thus there exists a ray
−→
P ′Z interior to ∠aP ′Q′, such that ∠Q′P ′a = RA.

By the right angles at P ′ and Q′, line P ′Z is parallel to Bb. Hence P ′a is
not the limiting parallel to Bb at P ′. By Proposition 34.9, Aa is not the
limiting parallel to Bb. This contradiction to our hypothesis finishes the
proof.
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35.8 Alternate proof.

A

B

P

P ′

R′

Q Q′Q′′ b
������������������� 44`

P ′′
a

  
  

  
  

  
  

 
44

��
��
��
��
��
�

44

 
 

 
 

 
 

Suppose that P, P ′ ∈ Aa, with A ∗ P ∗ P ′, and that Q and Q′ are the feet
of P and P ′, respectively, on line b. We must prove P ′Q′ < PQ. Supposing
the desired conclusion to be false, namely assuming that P ′Q′ ≥ PQ, we
shall derive a contradiction to the assumption that Aa|||Bb.

We first deal with the case that P ′Q′ ∼= PQ. Supposing this to be the
case, we relabel P ′ and Q′ as P ′′ and Q′′, and then notice that PP ′′QQ′′

is a Saccheri quadrilateral, with acute angles at P and P ′′. Now choose
P ′ with P ∗ P ′′ ∗ P ′, and let Q′ be its foot on Bb. By Proposition 34.4,
P ′Q′ > P ′′Q′′ ∼= PQ. So, in either case P ′Q′ > PQ: either this was so in
the first place, or it became so after the revision described in this paragraph.

Since P ′Q′ > PQ, there exists R′ with Q′R′ ∼= QP and with Q′ ∗ R′ ∗
P ′. Thus QQ′PR′ is a Saccheri quadrilateral, and hence PR′ is parallel to

QQ′ = Bb. Since
−→
PR′ is interior to ∠QPP ′, PP ′ is not the limit parallel

at P . By Proposition 34.9, Aa is not the limiting parallel to Bb at A. This
contradiction to our hypothesis finishes the proof.

Comment on the proofs of 35.8. In both proofs, it would have been
handy to have a ready-made lemma that says, in the semi-hyperbolic case,
if two lines have a common perpendicular, then they are not limit parallel
in any direction. I think I have said it in class; it is fairly natural; people
alluded to it in their work; and yet I cannot find it expressly stated in
Hartshorne. (If you find it, let me know.)


