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Please note that, as always, these notes are really not complete without
diagrams. I have included a few, but the others are up to you. (Although
I would say that, if you write it the way I did, 33.1 really requires no di-
agram, since it is really accomplished by pure logic—the manipulation of
contrapositives.)

I hasten to point out that Clavius’ Axiom was mentioned (as were others
in that section) as a historical footnote to the subject. In a certain historical
period, many people were trying all sorts of dodges to get [what they hoped
to be] a proof of Euclid’s fifth postulate. All such would-be proofs contained,
explicitly or implicitly, an extra assumption. Exercise 33.7, for example,
is an inquiry into how such extra assumptions—or axioms—relate to one
another (Clavius + (A) =⇒ (P), in this case). But our purpose (and that
of the text from §34 onward) is to bravely go into the world where there is
no guarantee about the fifth postulate (which is to say, no guarantee about
(P)). Therefore we leave behind all things like Clavius Axiom.

10.9 RASS. If BC ∼= B′C ′, we have 4ABC ∼= 4A′B′C ′ by SAS. To com-
plete the proof, we will suppose that BC 6∼= B′C ′ and deduce a contradiction.
Without loss of generality, we may suppose that BC < B′C ′. By Axiom C1,

there exists C ′′ on
−→
BC with BC ′′ ∼= BC ′. By Axiom C2 we have C 6= C ′′.

By Axiom 3 there exists D on line BC with C ∗B ∗D. We now have

∠ACC ′′ > ∠ABC ′′ ∼= ∠ABD > ∠AC ′′D = ∠AC ′′C.(1)

(The middle congruence is from the definition of a right angle, and the two
inequalities are from the Exterior Angle Theorem.)

On the other hand, 4ABC ′′ ∼= 4A′B′C ′, by SAS, and so AC ∼= A′C ′ ∼=
AC ′′; in other words, 4ACC ′′ is isosceles. Therefore, its base angles are
congruent:

∠ACC ′′ ∼= ∠AC ′′C.(2)

The contradiction between (1) and (2) completes the proof of RASS.

10.9 RASS, second proof (sketch). Choose point C ′′ on the ray opposite

to
−→
BC, with BC ′′ ∼= B′C ′. From SAS we have 4ABC ′′ ∼= 4A′B′C ′. Thus

we have AC ′′ ∼= A′C ′ ∼= AC and ∠C ′′ ∼= ∠C ′. Thus 4ABC ′′ is an isosceles
triangle whose base angles are congruent to ∠C and ∠C ′. Thus ∠C ∼= ∠C ′.
Therefore the two original triangles are congruent by AAS.
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10.9 RASS, third proof (sketch). Choose point A′′ on the ray opposite

to
−→
BA, with BA′′ ∼= BA. Choose point A′′′ on the ray opposite to

−→
B′A′,

with BA′′′ ∼= B′A′. By an easy use of SAS we see that 4AA′′C is an isosce-
les triangle whose base angles are congruent to the original ∠A. Likewise
4A′A′′′C ′ is an isosceles triangle whose base angles are congruent to the
original ∠A′. These two isosceles triangles are clearly congruent by SSS,
and hence ∠A ∼= ∠A′. Therefore the two original triangles are congruent by
SAS

11.5 Construction from triangle inequality, using (E). Let us suppose
that we are given segments AB, CD and EF with

AB < CD + EF(3)

CD < EF +AB(4)

EF < AB + CD.(5)

Moreover, we will choose our notation so that

AB ≤ CD ≤ EF.(6)

(Once the notation is chosen in this way, Equations (3) and (4) become
consequences of (5) and (6), and hence redundant.)

Define Γ and ∆ to be the circles

Γ =
{
P : EP ∼= AB

}
(center E, radius AB),(7)

∆ =
{
Q : FQ ∼= CD

}
(center F , radius CD).(8)

We are now going to invoke Axiom (E) on the top of page 108. So, we need
to see that ∆ contains a point inside Γ and also contains a point outside Γ.

By Axiom C1, on
−→
FE there is a point P with PF ∼= CD. Clearly P lies on

∆. Since CD < EF , we have E ∗ P ∗ F . Then by (5) we have

EP + PF = EF < AB + CD = AB + PF ;

hence EP < AB, and so P lies inside Γ. On the other hand, there exists a

point Q on the ray opposite to
−→
FE, with FQ ∼= CD. Again, Q lies on ∆,

but this time E ∗ F ∗Q. Thus we have

EQ = EF + CD > AB,

and so Q lies outside Γ.
Thus the hypotheses of (E) are satisfied, and hence also its conclusion.

Thus there exists a point G that lies on the intersection of ∆ and Γ. Let
us now consider the triangle 4EFG. Since G lies on Γ, we have EG ∼=
AB. Since G lies on ∆ we have FG ∼= CD. And finally, of course EF ∼=
EF . Hence the three sides of this triangle are congruent to the three given
segments, AB, CD and EF , which is what we set out to prove.
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33.1 Proclus equivalent to Playfair. Let us write the Lemma of Proclus
as follows:

If m||n, then (if m meets `, then n meets `).
Recall that an implication A =⇒ B is logically equivalent to its contraposi-
tive: not A =⇒ not A. Thus the Lemma of Proclus is now seen as logically
equivalent to this:

If m||n, then (if n||`, then m||`).
Which in turn is logically equivalent to:

If m||n and if n||`, then m||`.
This last statement, however, is none other than the assertion that par-
allelism is transitive, which we have already seen equivalent to Playfair’s
Axiom (P).

33.7(abc) The axioms of Clavius and Archimedes.

(a) It’s best to approach this after having done Proposition 34.1 in the next
section. The diagram for 33.7(a) contains three Saccheri quadrilaterals,
ABA′B′, ACA′C ′ and BCB′C ′, and Proposition 34.1 can be applied to
each of them separately. Doing this, we see that the four interior top angles
are congruent to one another. Since two of these four are supplementary to
each other, it follows that all four are right angles.

(b)
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Given AB ∼= BD, and right angles at C and E, with B and D on the same
side of ` = CE. By C4 and C1, there exists P on the B-side of ` with
PA ∼= DE and with a right angle at A. Let Q be the midpoint of PD. By
Part (a), there are right angles at P and Q.

Now 4PAD ∼= 4EDA, by RASS; hence ∠PDA ∼= ∠DAE and PD ∼=
AE.1 Consider now the small triangles4ABC and4DBQ. We just proved
that the angle at D is congruent to the angle at A; moreover we have
right angles at C and at Q, and we were given AB ∼= BD. Therefore
4ABC ∼= 4DBQ by AAS.

1We don’t need PD ∼= AE for (b), but we are saving it for (b′).
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From this congruence we have ∠DBQ ∼= ∠ABC. Let Q′ satisfy C ∗B∗Q′.
Then ∠DBQ′ ∼= ∠ABC by vertical angles, and hence ∠DBQ′ ∼= ∠DBQ by

transitivity. By the uniqueness part of C4,
−→
BQ is the same as

−→
BQ′, which

is to say, the opposite ray to
−→
BC. Therefore C, B and Q are collinear, and

C ∗ B ∗ Q. Again from 4ABC ∼= 4DBQ, we have CB ∼= BQ, and hence
CQ ∼= 2BC.

Finally, we have DE ∼= QC by Clavius’ Axiom itself. Therefore, by
transitivity, DE ∼= 2BC

(b′) — Addendum to (b). Recall from the proof of (b) that 4ABC ∼=
4DBQ, that Q is the midpoint of PD, and that PD ∼= AE. Thus

2AC ∼= 2DQ ∼= PD ∼= AE.

(c) Assuming Archimedes’ Axiom (A) and Clavius’ axiom, we shall prove
(P), expressed as follows: Suppose that P 6∈ ` and that m and n are two
lines through P . Then either m meets ` or n meets `.
Proof: Let F be the foot of the perpendicular from P to `. By C4, we
cannot have m and n both perpendicular to the line PF . We will assume
the notation is taken so that m is not perpendicular to PF . This means
that if we take points A and B on m with A ∗ P ∗ B, then one of the two
supplementary angles ∠APF and ∠BPF is acute, and the other is obtuse.
Let us take the notation so that ∠APF is acute. Our proof will be complete

when we have shown that
−→
PA meets `.

F `

m

P
A1C1 A2

C2
A3

C3 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

We let A1 = A, and we recursively define A2, A3, · · · (using C1) as points

on the ray
−→
PA1 that satisfy these congruences:

PA2
∼= 2PA1; PA3

∼= 2PA2; · · · PAn+1
∼= 2PAn · · · .

For each n, Cn is defined to be the foot of the perpendicular from An to line

PF . The acuteness of ∠FPAn tells us that Cn ∈
−→
PF (otherwise we would

have a violation of the Exterior Angle Theorem).
By (b′) above—and hence indirectly by Clavius’ Axiom—we have PCn+1

∼=
2PCn for each n. By the Axiom of Archimedes (finally, we get to use
it!), PCn > PF for some n. In other words, P ∗ F ∗ Cn, and so Cn and P
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are on opposite sides of `. On the other hand, because of the right angles at
C3 and at F , line CnAn is parallel to ` (by Euclid I.27). Therefore An and
Cn are on the same side of `.

From our two results about sides of `, we see that An and P are on
opposite sides of `. Therefore the segment PAn meets `, so of course the

ray
−→
PA =

−→
PAn meets `; as desired.

Note on this proof of 33.7(c). One frequent mistake was to construct

the points C1, C2, · · · along
−→
PF , and then hope for the corresponding points

A1, A2 · · · along
−→
PA. This doesn’t work—we have no axiom that will insure

their existence. What does work is to first find the points A1, A2 · · · along
−→
PA—all we need for this is C1—and then find C1, C2, · · · as the feet of
perpendiculars onto PF . It is (b′) that guarantees the correct spacing of
C1, C2, · · · .

Remark on 33.7(c). From the author’s setup of this exercise, one might
think that he is hinting that one should be able to get (c) directly from (b),
without a detour through (b′) as I have done. I don’t see it, but maybe
someone else does.

34.1 An inequality for Saccheri quadrilaterals.

F

E
B

D

A

C

F ′

D′C ′

Sketch of proof: Suppose that CD > AB in the Saccheri quadrilateral
ABCD. We will prove that ∠C is acute. Let EF be the midline of ABCD
(as previously described). Enlarge the figure on the opposite side of line AB

as follows. C ′ is on the ray opposite to
−→
AC with AC ′ ∼= AC; D′ is on the

ray opposite to
−→
BD with BD′ ∼= BD; and F ′ is on the ray opposite to

−→
EF
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with EF ′ ∼= EF ; A divide-and-conquer approach with triangles and SAS
(such as we have seen several times) will easily yield a right angle at F ′ and
C ′F ′ ∼= CF .

Thus F ′FC ′C is itself a Saccheri quadrilateral, whose vertex angles are
∠C and ∠C ′, and whose midline is AE. We can easily prove (and I think
it has appeared before) that AE < CF . It is immediate from Proposition
34.3(a) that ∠C is acute.

34.1 Alternate method. (Sketch.)
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Let the given Saccheri quadrilateral be ABCD, with right angles at A and
B, with midline EF , and with AB < CD. (Note in particular that this
diagram has distorted the angles. I really do intend right angles at A and
B, and also at A′ when we get that far.) We need to prove that ∠C is acute.

By Axiom C1, there exists A′ on
−→
FC such that FA′ ∼= EA, and there

exists C ′ on
−→
EA such that EC ′ ∼= FC. It is not hard to find some congruent

triangles that will allow one to prove that ∠A′ ∼= ∠A (we skip the details).
Therefore we have a right angle at A′.

Since EC ′ ∼= FC > EA, we have C ′∗A∗E; thus C ′ and E are on opposite
sides of line AC. Similar reasoning shows that C ∗A′ ∗ F , and thus that A′

and F are on the same side of AC. Finally the line EF is parallel to AC (by
Euclid I.27), and hence E and F are on the same side of AC. From these
three half-plane relations, we may conclude that C ′ and A′ lie on opposite
sides of AC. Therefore, lines AC and A′C ′ intersect at a point G.

Let us now consider the angles of 4A′CG. Obviously ∠C is an interior
angle of this triangle, whereas ∠FA′G is an exterior angle (since C ∗A′ ∗F ).
Hence, by the Exterior Angle Theorem, ∠C < ∠FA′G = RA.

34.3 Angle inscribed in semicircle. Hint. If you draw a segment from
the center to each vertex, you will have two isosceles triangles. Thus one
easily calculates that the angle sum of the triangle is twice the angle oppo-
site the diameter of the circle. (You should supply a diagram and all the
(easy) calculations.) The desired conclusion now follows immediately from
Proposition 34.7 and the Definition on page 311.


