
Mathematics 3210
Spring Semester, 2005
Homework notes, part 4
February 25, 2005

Please note that, as always, these notes are really not complete without
diagrams. I have included a few, but the others are up to you.

My first writeup illustrates a style of proof that we haven’t seen before, but
which is relatively common in the mathematics profession. It has the form of
a commentary on a published proof. The general idea is that the published
proof has almost what we want, so we can get away with describing only
the modifications or additions that are needed. (In this case, an attention
to the distinction between real numbers and rational numbers.)

It’s implicit that one could, if pressed to do so, actually write out a
self-contained proof, by taking the original proof and splicing in the modi-
fications. This is not usually worth the trouble, and in any case, one would
still need to cite one’s source for the original.

For obvious reasons, this sort of thing doesn’t lend itself well to an exam
question, so you can be sure that I won’t ask you for 8.6 on an exam.

8.6 (Skip I1–I3.) Betweenness in the Q-model. For the betweenness
axioms, we adapt Example 7.3.1 to the plane with co-ordinates from Q (the
rational number system) . For instance, for distinct a, b, c ∈ Q, we define
a ∗ b ∗ c to mean that either a < b < c or c < b < a, and as before, we
define A ∗B ∗C to mean that either a1 ∗ b1 ∗ c1 or a2 ∗ b2 ∗ c2 (or both). The
second paragraph of Example 7.3.1—establishing B1, B2 and B3—carries
over word for word, and thus need not be repeated here. Hartshorne’s proof
of B4 (top of page 79) is valid here, except that we must be sure that the
point of intersection found on AB or on AC has rational co-ordinates.

As indicated on page 79, the point of intersection is found by simultane-
ously solving two equations of the form ax + by + c = 0 (known as linear
equations. In order to get the above-mentioned point of intersection in the
rational plane we need two facts: (i) if a line is determined by two rational
points, then its coefficients a, b and c may be taken to be rational; (ii) if the
point (x, y) is determined as the intersection point of two lines with rational
coefficients, then x, y ∈ Q.

For (i), we shall assume without loss of generality that a 6= 0. The
equation ax + by + c = 0 does not change its meaning if a, b and c are all
multiplied by a non-zero constant. Therefore we shall do this in such a way
as to guarantee that a ∈ Q. Let (x1, y1) and (x2, y2) be two rational points
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on the line; in other words, suppose that

ax1 + by1 + c = 0; ax2 + by2 + c = 0.

A little algebra now yields

b =
a(x2 − x1)
y2 − y1

; c = − ax1 − by1.

Since a, x1, y1, x2 and y2 were all taken to be rational, it follows directly
that b and c are rational as well.

For (ii), we merely remark that there is a well-known algebraic proce-
dure for simultaneously solving two linear equations in two unknowns. [The
details were on the board in class.] This procedure involves only the funda-
mental operations of addition, subtraction, multiplication and division, and
hence it cannot introduce irrational numbers. This complete out proof of
(ii), and hence the proof of B4 for the rational co-ordinate plane.

Congruence for line segments—C2 and C3. Here we adapt Example
8.4.1. The assertion about C2 (one sentence at the bottom of page 87)
remains true here. The proof of C3 (first half of page 88), also remains true,
word for word and symbol for symbol). (The main point is that no new
points are introduced, and so one does not have to check the rationality of
any points.)

The failure of C1 in the Q-model. We consider one case of the axiom
C1, just as it is stated on page 82. (The axiom is stated as a universal
sentence, i.e. true for any A, B and C; hence to negate it I only have to
find one ray and one set of points for which it is false.) Let A = (0, 0)

and B = (1, 0). Let C also be (0, 0), and take the ray r to be
−→
CE, where

E = (1, 1).
Now Axiom C1 says that there exists a point D ∈ r such that AB ∼= CD.

To see that C1 fails in the rational plane, we will simply show that no
such D can have rational co-ordinates. Like every point on r, our point D
has the form (t, t) for some t ≥ 0. To say that AB ∼= CD is to say that
d(A,B) = d(C,D); in other words

1 =
√

12 + 02 =
√
t2 + t2 =

√
2 t.

Thus t = 1/
√

2, which is not rational; hence there is no such D in the
rational plane.

The text does not emphasize this here, but we can say that the import of
this exercise is this simple fact: C1 cannot be proved from I1–I3, B1–B4 and
C2–C3.

9.2 Since
−→
AD is interior to ∠BAC, we may apply the Crossbar Theorem

to see the existence of a point D′ on
−→
AD with B ∗ D′ ∗ C. It is of course
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true that
−→
AD′ =

−→
AD Since

−→
AE is interior to ∠D′AC = ∠DAC, we may

apply the Crossbar Theorem to see the existence of a point E′ on
−→
AE with

D′ ∗ E′ ∗ C. It now follows from Exercise 7.1(b) (second conclusion) that
B ∗E′ ∗C. (Apologies—on the assignment page I suggested using 7.1(a). If
you look at it closely, however, you will see that 7.1(b) is what is needed.)

Now obviously B and E′ are on the same side of line AC, and C and E′

are on the same side of line AB. Therefore
−→
AE =

−→
AE′ is in the interior of

∠BAC.

Alternate proofs for 9.2. There are some alternate versions of this,
but all really seem to come down to the same considerations. For instance,
you can replace every statement of the form B ∗ C ∗D with an equivalent

statement of the form “
−→
AC is interior to ∠BAD.” You can decline to cite

Exercise 7.1 in favor of recapitulating its proof (i.e. invoking line separation.)
I won’t say any more about these here, except that (if correctly presented)
they are valid alternatives.

10.1 Angle bisector.

A

B

C

D

B′C ′ D′

E
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Given ∠BAB′. Choose a point C 6= A on
−→
AB. Use C1 to obtain a point C ′

on
−→
AB′ such that AC ′ ∼= AC. Choose a point D 6= C on the ray opposite

to
−→
CA. Use C1 to obtain a point D′ on the ray opposite to

−→
C ′A such that

C ′D′ ∼= CD.
Use a straight-edge to draw the two lines C ′D and CD′.
Consider now the line CD′ and the two half-planes that it determines.

The betweenness relations A∗C ∗D and A∗C ′ ∗D′ tell us that A and D are
on opposite sides of CD′ and that A and C ′ are on the same side of CD′.
Therefore D and C ′ lie on opposite sides of CD′. In other words segment
C ′D intersects line CD′ at a point which we shall denote E.

The angle bisector is obtained by using a straight-edge to draw the line
AE.
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Commentary (optional) on the construction: Similarly, segment CD′ in-
tersects line C ′D at a point which we shall denote F . Clearly the four points
C, D, C ′ and D′ are not collinear, and hence the two lines C ′D and CD′

have at most one point of intersection (by the incidence axioms). Clearly
both E and F line on both of these lines; hence E = F . Now we see that
E = F is an interior point of both segments C ′D and CD′.

Proof that AE bisects the angle. Omitted.

10.2 Midpoint of a segment.

A

BC

D

E

F
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Given AB. Let C be any point not on line AB. Let H be the half-plane of

AB that does not contain C. By C4, there is a unique ray
−→
BF in H with

∠ABF ∼= ∠BAC. By C1, there is a unique point D on
−→
BE with BD ∼= AC.

Since D and C lie on opposite sides of line AB, the segment CD meets the
line AB at a point E. This E is the desired midpoint.

Proof that E is the midpoint. Omitted.

10.4 Foot of perpendicular from A to `.

`
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D
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Given line ` and point A 6∈ `. Let C,D be two points on `. Let H1 be the
`-halfplane determined by A, and let H2 be the opposite halfplane. By C4,

there is a ray
−→
CE such that E ∈ H2 and ∠ECD ∼= ∠ACD. By C1, there

is a point B on
−→
CE such that CB ∼= CA. Since A and B are in opposite

halfplanes, the line AB intersects `, and by non-collinearity, the intersection
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is unique, and may be called F . The angle ∠AFC is a right angle, and the
construction is complete.

Proof that ∠AFC is a right angle. Omitted.

10.6 Larger side opposite larger angle.
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C

B
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Without loss of generality, we may assume that BA > BC. Thus we wish

to prove that ∠A < ∠C. By Axiom C1, there is a point D on
−→
BA such

that BD ∼= BC. Clearly A, D and C are non-collinear and thus form a
triangle, and D, B and C are also non-collinear. . . [supply reasons for the
non-collinearity assertions]. Thus 4DBC is an isosceles triangle, and so
∠CDB ∼= ∠DCB, by Euclid I.5 (which is proved for our context on pages
97–98).

Since BA > BC ∼= BD, we have B∗D∗A. Therefore ∠CDB is an exterior

angle of 4CAD, and so ∠CAB < ∠CDB. Moreover
−→
CD is interior to

∠ACB because . . . [supply a proof of the interior assertion], and so ∠DCB <
∠ACB. Thus finally we have

∠A = ∠CAB < ∠CDB ∼= ∠DCB < ∠ACB = ∠C.

Warning on 10.6 Don’t try copying the angle at A into the angle at C.
That way lies a lot of trouble and false conclusions. (I marked some of these,
but not all of them.) Do it this way: copy the segment BC.

10.11 Any finite set lies in a halfplane. We begin with these two
lemmas:
Lemma 1: If `||m, then ` lies entirely in one of the two half-planes deter-
mined by m. Proof: Suppose not, then there are points A,B ∈ ` with A
in one m-halfplane and B in the other m-halfplane. By definition of plane
separation, the segment AB meets m. Thus ` meets m. Thus ` and m are
not parallel. This contradiction completes the proof of Lemma 1.
Lemma 2: Let H1 and H2 be the two half-planes associated to a line `. If
m is a line contained in H2, then H1 and ` are contained in one of the two
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half-planes of m. Proof: Suppose we had points A,B ∈ H1 ∪ `, such that A
and B are in opposite m-halfplanes. Thus there exists C ∈ AB∩m. On the
other hand, A,B ∈ H1 ∪ ` implies AB ⊆ H1 ∪ `, and we are given m ⊆ H2.
Thus

C ∈ (AB ∪ `) ∩m ⊆ (H1 ∪ `) ∩H2.

The last conclusion is contradictory, since we know that H1, H2 and ` are
disjoint sets. This contradiction completes the proof of Lemma 2.

Returning to Exercise 10.11, we proceed by induction. Suppose we are
given points P1, P2, P3, . . . , and we wish, for each n, to find a line `n such
that the first n of these points all lie in one of the two `n-halfplanes.

We proceed by induction. First of all, the truth of the assertion is obvious
for n = 1. Now, the so-called “inductive step.” Let us suppose that we have
a line `n−1 for which the desired conclusion holds for the first n− 1 points.
We need to establish the conclusion for the first n points (possibly finding
a new line for `n). Let the two halfplanes of `n−1 be denoted H1 and H2.
We can obviously choose the notation so that points P1, · · · , Pn−1 all lie in
H1. Now if Pn ∈ H1, we have the desired conclusion for `n`n−1, and there
is nothing more to prove.

So, let us examine the case where Pn 6∈ H1. By Euclid I.31, there exists
a line m||`n−1 through Pn. (If Pn ∈ `n−1, then simply take m = `n−1.) Let
the two sides of m be denoted K1 and K2, with K1 denoting the side that
contains Pn−1. By Lemma 2, H1 ∪ `n−1 ⊆ K1. (In case m = `n−1, we have
H1 = K1.) Let Q ∈ K2; by Euclid I.31, there exists a line r||m through
Q. By Lemma 1, r lies entirely in the m-halfplane K2, and by Lemma 2,
K1 ∪m lies in a single r-halfplane, which we shall call J .

We now have

{P1, · · · , Pn−1} ⊆ H1 ⊆ K1 ⊆ J,

and moreover, by construction, Pn ∈ m ⊆ J , and so, in fact,

{P1, · · · , Pn} ⊆ J.

Thus we may take r for the desired line `n, and the inductive argument is
complete.

Please do not refer to Axiom (P) (or “the parallel postulate”) in doing
this problem. First of all, it has not been assumed, and so it is not avail-
able. Second, (P) refers to the uniqueness of parallels, which we don’t need
here. What we need is their existence, which is given to us by Euclid I.31
(mentioned on page 102). Generally speaking, (P) will not be assumed or
available to us for the rest of the semester. In fact, the whole point is that
(P) is what we are leaving behind.

Alternate proof (???). In class on Wednesday, there were some at-
tempts at speaking about a proof that doesn’t use Euclid I.31. I don’t
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believe I found a complete version of such a proof in looking over the pa-
pers. If you think you have one, discuss it with me, and we can post it here.
(I do have a slightly different proof, but it still uses I.31.)

Some interesting related facts. 1. In Euclidean geometry, for every fi-
nite set there is a triangle whose interior contains that set. In non-Euclidean
geometry, there is a set of four points that is not contained inside any tri-
angle. 2. Let X denote the union of two intersecting lines. In Euclidean
geometry, there is no halfplane that contains all of X. In non-Euclidean
geometry, there is always such a halfplane (although its edge may be light-
years from the center of the X).


