
Mathematics 3210
Spring Semester, 2005
Homework notes, part 3

Please note that, as always, these notes are really not complete without
diagrams. I have left that work to you.

Just a little reminder that Euclid’s axioms have been left behind. From
now on, all steps in proofs must be justified by the incidence, betweenness
and congruence axioms, and whatever axioms may come after them.

In looking over this assignment, I noted many places where people were
just a tad sloppy about the location of a point through axiom C1. [Since
it seemed minor, I left most of them unmentioned, but it would be good
to tighten up on this.] Suppose, for instance, that in my writeup of 8.1(a)
immediately following, I had said this instead of the third sentence: “On

this same ray [namely
−→
AB], there is a unique point Y with XY ∼= EF .”

[This is analogous to what I read on several papers.] First off, it sounds
like it’s right because it uniquely specifies a point with a ray and a distance.
(With a diagram, you can see that there may be two Y ’s on this ray with
XY ∼= EF .) For uniqueness Axiom C1 requires the distance from the vertex
of the ray. So in the case at hand, we need to limit consideration to the ray

opposite to
−→
XA; I have implicitly done this by requiring A ∗X ∗ Y .

8.1(a) On ray
−→
AB there is a unique point X with A∗B ∗X and BX ∼= CD

(Axiom C1). The segment AX is by definition equal to AB +CD. On this
same ray there is a unique point Y with A ∗ X ∗ Y and XY ∼= EF . The
segment AY is by definition equal to (AB + CD) + EF .

On ray
−→
CD there is a unique point Q with C ∗ D ∗ Q and DQ ∼= EF .

The segment CQ is by definition equal to CD + EF . Now let us compare
CQ = CD+EF with the segment BY constructed above. We have B∗X∗Y ,
C ∗ D ∗ Q, BX ∼= CD and XY ∼= EF ∼= DQ. Therefore, by Axiom C3,
BY ∼= CQ = CD + EF .

So now let us consider the three collinear points A, B and Y . We have
A ∗B ∗ Y and BY ∼= (CD+EF ). Therefore, by definition of “+,” segment
AY is equal to AB + (CD + EF ). Thus we have

(AB + CD) + EF = AY = AB + (CD + EF ).

Comment. Notice that the equation contains four +-signs; therefore you
might think that you need to perform the +-construction—invocation of Ax-
iom C1 to get a new point in the right place—four times. Actually, because
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of the equality, you only need to perform it three times. The three times were
for X, for Y and for Q.

8.2 Our proof of the first part is by contradiction: assume that AE 6∼= CF .
According to Proposition 8.4(ii), either AE < CF or AE > CF . Without
loss of generality, we shall assume that AE < CF .

By Axiom C1, there exists F ′ on the ray
−→
CF such that CF ′ ∼= AE. Since

AE < CF , we have C∗F ′∗F . We now apply Proposition 8.3, using A∗E∗B,
AB ∼= CD and AE ∼= CF ′ to obtain C ∗ F ′ ∗ F and EB ∼= F ′D.

On the other hand, From EB ∼= AE < CF ∼= FD, we deduce that

EB < FD. Again by Axiom C1, there exists F ′′ on the ray
−→
DF such that

DF ′′ ∼= EB. Since BE < FD, we have D ∗ F ′′ ∗ F , or F ∗ F ′′ ∗D.
Now consider sides of the line CD relative to the point F . By C ∗ F ∗D,

C and D are on opposite sides of F . By C ∗F ′∗F , C and F ′ are on the same
side of F . By F ∗ F ′′ ∗D, D and F ′′ are on the same side of F . Therefore
F ′ and F ′′ are on opposite sides of F . Therefore F ′ 6= F ′′.

On the other hand, F ′ and F ′′ are points on
−→
DF such that DF ′ ∼= EB ∼=

DF ′′. By the uniqueness part of Axiom C1, we have F ′ = F ′′. This contra-
diction completes our proof of the first part.

Then it is required to show that a midpoint, if one exists, is unique. So
suppose we have two midpoints: A ∗M1 ∗B, AM1

∼= M1A and A ∗M2 ∗B,
AM2

∼= M2A. We apply the previous part, with C = A and D = B,
obtaining AM1

∼= AM2. By Axiom C1 (uniqueness part), M1 = M2.
Many people forgot to include a proof that midpoints are unique; in some

cases I neglected to mention this in grading them. Please be aware that such
a proof was asked for in this problem.

8.2, Second proof. Again by contradiction: assume that AE 6∼= CF .
According to Proposition 8.4(ii), either AE < CF or AE > CF . Without
loss of generality, we shall assume that AE < CF .

Thus there is a point F ′ with C ∗ F ′ ∗ F and CF ′ ∼= AE. By subtraction
of segments (Proposition 8.3), F ′D ∼= EB. Thus

CF ∼= FD < F ′D ∼= EB ∼= AE,

where the displayed inequality comes easily from F ′ ∗ F ∗D. Since congru-
ences respect inequality (Proposition 8.4) we have CF < AE, in contradic-
tion to our assumption that AE < CF . This contradiction completes the
proof of the first part. The second part (uniqueness of midpoints) is handled
as above.
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8.2, Third proof, assuming we have already done 8.3. Again by
contradiction: assume that AE 6∼= CF . According to Proposition 8.4(ii),
either AE < CF or AE > CF . Without loss of generality, we shall assume
that AE < CF .

It is immediate from the definitions that AB = AE+AE and that CD =
CF + CF . Therefore, by Exercise 8.3,

AB = AE +AE < CF +AE
∼= AE + CF < CF + CF = CD.

This contradiction (to AB ∼= CD) completes the proof of the first part. The
second part (uniqueness of midpoints) is handled as above.

8.3 Given AB < CD, we first apply Prop 8.4(a) to get AB < DC. By
definition of “<,” there is a point U with D ∗U ∗C and DU ∼= AB. For the
addition of segments, there are unique points G and H, with A ∗B ∗G and
C∗D∗H and BG ∼= DH ∼= EF . Then AB+EF = AG and CD+EF = CH.
Now we also have AB ∼= UD, BG ∼= DH and A ∗B ∗G. By Exercise 8.1(b)
we U ∗D ∗H. Therefore, by the addition axiom C3, we have AB + EF =
AG < HC ∼= CH = CD + EF .

8.4 Let X on ray r correspond to X ′ (also known as φ(X)) on ray s that is
defined by the condition BX ′ ∼= AX. By Axiom C1, this X ′ is well-defined:
there is one such X ′ and only one such X ′. The correspondence has an
inverse: given X ′ on ray s, we may let X ′ correspond to the unique X on s
that satisfies AX ∼= BX ′; this two-way correspondence obviously establishes
a one-one correspondence between X and X ′.

First proof that X ←→ X ′ respects betweenness and congruence: We
begin with two points X and Y that satisfy A ∗X ∗ Y , i.e. for which AX <
AY . Since we have BX ′ ∼= AX and BY ′ ∼= AY , an appeal to Proposition
8.3 immediately yields B∗X ′∗Y ′ (i.e. BX ′ < BY ′). and X ′Y ′ ∼= XY . Thus
we have proved that the desired result about congruence, and a special case
of betweenness.

For the general case of betweenness, let us suppose that X,Y, Z on r
satisfy X ∗ Y ∗ Z. Thus X and Z are on opposite sides of Y . Without loss
of generality we will assume that A is on the X-side of Y ; in other words
A∗X ∗Y . By Exercise 8.1(a), we have A∗Y ∗Z. By the previous paragraph,
we have B ∗X ′ ∗ Y ′ and B ∗ Y ′ ∗ Z ′. By 8.1(b), we have X ′ ∗ Y ′ ∗ Z ′.

Alternate proof of preserving. Let us be given A ∗ X ∗ Y ∗ Z. Now
define X ′′, Y ′′, Z ′′ as follows. X ′′ is the unique point (by C1) on s so that
BX ′′ ∼= AX. (Thus X ′′ = X ′, by uniqueness.) Next, Y ′′ is defined to be
the unique point on the ray opposite X ′′B such that X ′′Y ′′ ∼= XY . By the
addition axiom, AY ∼= BY ′′. By uniqueness, Y ′′ = Y ′. Thus X ′Y ′ ∼= XY ,
and preservation of congruence is established.
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Continuing, define Z ′′ to be the unique point on the ray opposite Y ′′X ′′

such that Y ′′Z ′′ ∼= Y Z. In particular, we have X ′′ ∗Y ′′ ∗Z ′′. By the addition
axiom, AZ ∼= BZ ′′. By uniqueness, Z ′′ = Z ′. Now, by substituting equals
for equals, X ′′ ∗ Y ′′ ∗Z ′′ immediately yields X ′ ∗ Y ′ ∗Z ′. Thus betweenness
is preserved.

8.5(a) By Proposition 7.2 (line separation), a line ` through O comprises

two rays; call them
−→
OX1 and

−→
OX2. According to Axiom C1,

−→
OX1 contains

exactly one point C1 with OC1
∼= OA, which is to say that

−→
OX1 meets the

circle in the single point C1. Similarly,
−→
OX2 meets the circle in a single

point C2. Therefore ` meets the circle in the two-point set {C1, C2}.

8.5(b) Suppose that ` and m are distinct lines through O. By part (a) `
meets the circle at a point Q, and m meets the circle at a point R. We
claim that Q 6= R are non-collinear. If not, then ` and m would be two lines
containing the two points O and Q, in contradiction to Axiom I1. In other
words, we see that distinct lines through O contain distinct points of the
circle. Therefore, to complete the Exercise, it will be enough to demonstrate
that there are infinitely many lines through O.

Let n be a line that does not contain O (incidence axioms). As in the
previous paragraph, it follows from Axiom I1 that distinct points on n de-
termine distinct lines through O. (If Q,R are distinct points on n, then
OQ 6= OR.) Since n has infinitely many points (by Exercise 7.4), there
must be infinitely many lines through O.


