
Mathematics 3210
Spring Semester, 2005
Homework notes, part 2

Here is a little hint about proofs in the Hilbert axiomatization. There is no
need to include steps that command one to draw the line or segment between
two points, or to draw an angle, etc. In fact the word “draw” does not occur
in the vocabulary or the formal apparatus of the Hilbert-style geometry—
which of course is the style of modern mathematics in general. (The line
connecting distinct points A and B exists by Axiom I1. Its existence is
primordial, existing as soon as we have A and B.)

Of course such steps may have a psychological value: if not overdone,
they serve to bring your attention to the right place. If you wish to include
them, they can be seen as doing no harm, but you should remain aware that
they don’t accomplish anything. In a discursive proof of the modern style,
the trend would be more to say something like, “now let us consider the line
that joins A and B.”

Please be careful about existential axioms like B2: “there exists a point
C such that A ∗ B ∗ C.” All you know about C is that A ∗ B ∗ C. It is
not necessarily equal to any point that you already have. It is a new point.
Thus, if you already had a point called C in your discussion, you must call
the new point by a name other than C.

6.6(a) We choose Example 6.1.3, on page 68. It was proved there that this
is an incidence geometry. From the diagram there, it is clear that EA‖DC
and DC‖EB (in each case, there is no point of intersection). If parallelism
were an equivalence relation in this example, we could apply transitivity to
obtain EA‖EB. But this is manifestly false in the example, for the lines EA
and EB have the point E in common. (Note: one small misunderstanding
was common here. For an example in geometry, you need to be speaking of
a definite plane. In §6, the kind of plane we are talking about is an incidence
geometry.)

(b) If we assume the parallel postulate (P), then parallelism is an equiv-
alence relation. This could be phrased as a proof by contradiction, but it
works a little more smoothly to prove instead the contrapositive: if paral-
lelism fails to be an equivalence relation, then (P) is false. Now it is evident
from the definition (top of page 68) that reflexivity and symmetry hold re-
gardless of (P). So, if parallelism is not an equivalence relation, it is because
there is a failure of transitivity. In other words, there exist lines `, m and n
with m‖`, `‖n, but m not parallel to n. The latter assertion means simply
that there is a point Q that lies on m ∩ n. Now our failure of Axiom (P) is
clear: lines m and n are two parallels to ` through the point Q.
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(c)Conversely, if parallelism is an equivalence relation in a given incidence
geometry, then (P) must hold in that geometry. Again the contrapositive:
we will assume that (P) fails and then show that parallelism is not an equiv-
alence relation. Well to say that (P) fails is simply to say that there are a
line ` and a point Q with two parallels, m and n to ` through Q. In other
words, we have m‖`, `‖n, but m not parallel to n. This failure of transitiv-
ity means that parallelism is not an equivalence relation. (Note this: when
a proposition and its converse are both true—as in (b) and (c) here—it is
sometimes (not always) possible for each of the two proofs to have the same
steps, but in the reverse order. If you look at my proofs of (b) and (c), you
will see that this is what happened here.)

7.1(a) (use Prop. 7.2). Let ` denote the line joining A and B. To prove
A ∗B ∗D from the assumptions, let us use Prop. 7.2 to divide ` at B. The
assumptions (together with clauses (a) and (b) of the proposition) give you
that A and C are on opposite sides of B, and that C and D are on the same
side of B (on `). Since ` has only two sides relative to B, you should be able
to move to the desired conclusion from here. The other parts are similar
(and you should do them).

7.2 (use Ex. 7.1(a)) If such C and D existed, we would then have (a)
C ∗A∗D and C ∈ AB and D ∈ AB. The latter condition means that either
(i) D = A or (ii) D = B or (iii) A ∗D ∗ B. Clearly (i) contradicts B1, and
(ii) (together with A ∗ C ∗ B) contradicts B3. Finally (iii) and (a), using
7.1(a), yield C ∗A ∗B, another contradiction to B3.

7.2, alternate proof (not using 7.1(a)). We are given A ∗C ∗B; hence
B and C lie on the same side of A in the line AB. We are also given that
A ∗D ∗ B; hence B and D lie on the same side of A. Since C and D both
lie on the B-side of A, we may say that C and D lie on the same side of A.

On the other hand C ∗ A ∗D says that C and D lie on opposite sides of
A, in contradiction to what we just proved. Thus C ∗ A ∗ D is impossible
for C,D ∈ AB.

7.4 Infinitely many points on a line `. By Axiom I2, we may select two points
A0 and A1 on `. By Axiom I3, there exists A2 on ` so that A0 ∗A1 ∗A2. It
follows from Axiom A1 that the three points we have so far are distinct.

Proceeding recursively, let us suppose that we have already defined points
A0 · · ·An which are all distinct and satisfy Ak ∗ Ak+1 ∗ Ak+2 for each ap-
propriate k. We now apply Axiom B2 to get a point An+1 such that
An−1 ∗ An ∗ An+1. We need to see that An+1 is distinct from each pre-
viously constructed Ak. Beginning with

Ak ∗Ak+1 ∗Ak+2

Ak+1 ∗Ak+2 ∗Ak+3,
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we apply exercise 7.1(a) to get

Ak ∗Ak+2 ∗Ak+3.

Combining this with

Ak+2 ∗Ak+3 ∗Ak+4,

we get

Ak ∗Ak+3 ∗Ak+4.

Carrying on in this manner1,we finally get

Ak ∗An ∗An+1,

which tells us (Axiom 1) that An+1 is distinct from Ak. Since we can do
this for every k, we see that An+1 is a new point. Now we can do all of this
for every n, thus creating infinitely many new points An on `. Say goodbye
to those finite geometries of the previous section.

7.4, alternate writeup. This version is a little less formal and rigorous,
but it conveys the idea, and may be a little easier to understand. The axioms
immediately give us two points on `, which we will call A and B. Next, we
apply Axiom B2 to get a point C with A ∗B ∗ C. By Axiom B1, the three
points A, B and C are distinct. By axiom B3, there exists D on ` with
B ∗C ∗D. Axiom B1 tells us that B, C and D are distinct, but we still have
to face the possibility that A and D might be the same point. For this, we
invoke Exercise 7.1(a). It tells us that A ∗ C ∗D; and hence, by Axiom B1,
A 6= D. We now have four, and now we go for a fifth.

By Axiom B2, there is a point E on ` with C ∗D ∗E. Axiom B1 tells us
that C, D and E are distinct, but there is still the possibility that E = A
or E = B. By construction (previous paragraph) we have B ∗ C ∗D. This,
together with C ∗D ∗E and Exercise 7.1(a) yields B ∗C ∗E, and so B 6= E.
And this last betweenness assertion, together with A∗B∗C, yields A∗B∗E.
Hence finally A 6= E, and so we have five points.

Our next move would be to get a sixth point F with D ∗E ∗F . The proof
that F is distinct from the other five is similar to what has come before,
except that now we need separate arguments for E 6= A, E 6= B and E 6= C.
It should now be clear that these arguments extend indefinitely through
points G, H and so on, ultimately yielding infinitely many points on `.

7.4, third proof. Here we give a presentation that involves the extra work
of proving a lemma, but then is much more straightforward and conceptual.

Lemma If A ∗ B ∗ C, then AB ⊂ AC, i.e. the segment AB is a proper
subset of the segment AC. Proof of lemma. First AB ⊆ AC. For this
inclusion of sets, we will assume that Q ∈ AB, and prove that Q ∈ AC. We
leave the case of Q = A and Q = B to the reader. Thus it remains to prove

1Officially, the method here would be a proof by mathematical induction, which you
may have studied already. We have enough else to do this semester, so we won’t spend
any time talking about inductive proofs.
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that if A ∗Q ∗ B and A ∗ B ∗ C, then A ∗Q ∗ C. Consider the two sides of
point B on line AB. Clearly A and Q are on the same side of B, while A
and C are on opposite sides of B. Therefore C and Q are on opposite sides
of B; whence Q ∗B ∗C. Now from A ∗Q ∗B and Q ∗B ∗C, using Exercise
7.1(a), we have the desired relation A ∗ Q ∗ C. As for the fact that it is a
proper subset, we clearly have C ∈ AC but not in AB.

Now the proof of 7.4 (infinitely many points on a given line `) from the
Lemma. We know by I1 that there are two points A1 and A2 on `. Then by
repeated use of Axiom B2, we have points A3, A4, . . . , such that

A1 ∗A2 ∗A3

A1 ∗A3 ∗A4

A1 ∗A4 ∗A5

...

By the lemma, we have

A1A2 ⊂ A1A3 ⊂ A1A4 ⊂ A1A5 ⊂ · · · ,

which is an infinite increasing sequence of subset of `. A finite set cannot
have such a sequence of subsets; hence, ` is an infinite set.

7.6 Choose a point D so that A, B and D are non-collinear (Axiom I3.)
We now make three successive applications of Axiom B2: Choose E so that
B ∗D ∗E, then F so that A∗E ∗F , and then G so that F ∗D ∗G. We want
to have G in the interior of ∠ADB. This means we need to see (i) that A
and G are on the same side of line BD, and (ii) that B and G are on the
same side of line AD. I will do (i) for you (you should do both of them). By
construction, E lies on BD. Therefore, since A∗E ∗F , we have A and F on
opposite sides of BD. Then since F ∗D ∗G, we have F and G on opposite
sides of BD. Therefore A and G lie on the same side of BD.

Thus we have seen that G is in the interior of ∠ADB. Therefore, by the

Crossbar Theorem, the ray
−→
DG intersects the line AB at a point C between

A and B, as desired.
(Notes: 1. I have not supplied a diagram for 7.6, but since I have based

my constructions on the axioms, I am confident that if you follow the in-
structions you will arrive at a correct diagram. 2. This construction may
not be the simplest one available. In trying for a simpler construction make
sure that you never assume what we are trying to prove.)

7.9 (use Ex. 7.6) Let us be given 4ABC. By Exercise 7.6, there exists a
point D with A ∗D ∗ C. A second application of 7.6 yields a point E with
B ∗ E ∗D. We claim that E is an interior point of 4ABC, and hence that
this interior is not empty. For this we need: (i) E is on the B-side of AC,
(ii) E is on the A-side of BC, and (iii) E is on the C-side of BA. I will do
(i) and (ii); you should do all three.
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(i): Line BE meets line AC at one point only, namely D. We have
B ∗ E ∗ D, and hence D is not on BE. Thus line AC does not meet BE.
Thus E is on the B-side of AC.

(ii): Similarly, line BC does not meet segment ED, and line BC does not
meet segment AD. Thus E and D and A are all on the same side of BC.
In particular, E is on the A-side of BC.

7.10 Ray
−→
AD is in the interior of ∠BAC; by the crossbar theorem it meets

an interior point E of side BC. Consider now 4AEB; line ` contains an
interior point (namely D) of side AE, and hence by Axiom B4, it contains
a point of AB or a point of BE. But of course BE ⊂ BC, so we really have
a point of AB or a point of BC, as required.


