
Chapter Six
Hilbert’s Seventh Problem and Transcendental Functions

So far we have not said much about an important portion of Hilbert’s Seventh
Problem, wherein he said

we expect transcendental functions to assume, in general, transcendental values
for [...] algebraic arguments [...] we shall still consider it highly probable that
the exponential function eiπz [...] will [...] always take transcendental values for
irrational algebraic values of the argument z

In other words, Hilbert speculated that if f(z) is a transcendental function and
if α is an irrational algebraic number then f(α) is a transcendental number.

The function eiπz, which Hilbert explicitly mentions, is covered by the
Gelfond-Schneider Theorem because eiπ = −1 is an allowable value of α. A
simple question is : For which numbers γ do we already know that the function
eγz, in Hilbert’s words, always take transcendental values for irrational algebraic
values of the argument z. The partial answer we can already give to this question
comes in two parts. The first part preceded Hilbert”s lecture. The Hermite-
Lindemann Theorem established the transcendence of eα for any non-zero alge-
braic number α. It follows, of course, that if in the original question we take γ
to be any non-zero algebraic number then the function eγz certainly takes on
transcendental values for any non-zero algebraic values of the argument z. The
second part of our answer to this question comes from the Gelfond-Schneider
Theorem. If γ is the natural logarithm of any algebraic number α 6= 1 then the
function eγz = αz also takes on transcendental values for any irrational alge-
braic values of the argument z. Thus we have the partial answer to the original
question: For any γ ∈ {α, logα : α an algebraic number different from 0 or 1}
the function eγz takes on transcendental values for any irrational algebraic val-
ues of the argument z. We note that although γ = iπ is in the above set of values
it is, unfortunately, still a fairly small set of values; for example it is certainly
countable.

The disclaimer in general in Hilbert’s posing of his problem that transcenden-
tal functions should take transcendental values at irrational algebraic numbers
saved him from possible embarrassment when counter-examples to the most
general interpretation of this conjecture were given. We will not consider this
topic here but notice that it is easy to exhibit a transcendental function that
is algebraic at any number of prescribed algebraic numbers. For example, if
α1, α2, . . . , αL are algebraic numbers, then

f(z) = e(z−α1)(z−α2)···(z−αL) (1)

produces an algebraic value for each of z = α1, α2, . . . , αL.

Despite the simplicity of the above counterexample to one interpretation of
Hilbert’s conjecture, a slight generalization of the question posed by Hilbert
has proven to be a fruitful one for transcendental number theory. Instead of
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considering the values of a single function it is natural to consider the values
of two functions simultaneously. The reason this is a natural generalization of
Hilbert’s question is because this point of view is already implicit in his ques-
tion. Asking whether a transcendental function f(z) takes on transcendental
values for algebraic values of the argument is equivalent to asking: Can the
functions f(z) and z be simultaneously algebraic? (Or, more precisely, can the
functions f(z) and z be simultaneously algebraic, possibly with a finite number
of exceptions?) The Hermite-Lindemann Theorem says that ez and z are not
simultaneously algebraic except for z = 0. The Gelfond-Schneider Theorem has
two possible statements in terms of functions and their values. One says that
for an algebraic number α 6= 0, 1 the functions z and αz are not simultaneously
algebraic except when z is a rational number. Another version of the Gelfond-
Schneider Theorem says that if β is an irrational algebraic number then the
functions ez and eβz cannot be simultaneously algebraic except when z = 0.

In this lecture we consider the question of when two algebraically indepen-
dent functions can be simultaneously algebraic, and see that some important,
but far from definitive, steps have been taken towards answering this question.
We will then expand our dictionary of available functions beyond z and ez to
include elliptic functions. We first reframe the Gelfond-Schneider Theorem to
involve two functions at two points.

Theorem. Given an irrational ξ ∈ C, the two functions eξz and z cannot be
simultaneously algebraic at two Q-linearly independent complex numbers x1 and
x2.

Note: In other words at least one of the four numbers

x1, x2, e
ξx1 , eξx2

is transcendental.

Proof. If all four of the numbers x1, x2, e
ξx1 , and eξx2 are algebraic then the

numbers ξx1 and ξx2 are logarithms of algebraic numbers, namely of eξx1 and
eξx2 , respectively. We also observe that by our hypothesis, ξx1 and ξx2 are Q-
linearly independent. Thus, by the second version of Hilbert’s seventh problem,
the ratio ξx1

ξx2
= x1

x2
is transcendental, which contradicts the assumption that

x1/x2 is algebraic. Therefore at least one of the four numbers in the theorem
must be transcendental.

The Six Exponentials Theorem

Taking z as one of the functions under consideration allows us to restate what
might be called classical transcendence theorems. To move into the modern era
we want to expand the type of functions under consideration, and before we
move on to the so-called Weierstrass ℘−function we consider two, algebraically
independent exponential functions.
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With these results as inspiration, in this section we deduce a theorem that
straddles the line between classical and modern transcendental number theory—
the so-called Six Exponentials Theorem. This result is classical in that its proof
is simply an elaboration of our proof of the Gelfond–Schneider Theorem and yet
is modern in that it examines the transcendence of values of special functions
rather than of particular numbers.

Theorem Let {x1, x2} and {y1, y2, y3} be two Q-linearly independent sets of
complex numbers. Then at least one of the six numbers

ex1y1 , ex1y2 , ex1y3 , ex2y1 , ex2y2 , ex2y3

is transcendental.

For example, if we consider the sets {1, e} and
{
e, e2, e3

}
, then the Six Expo-

nentials Theorem implies that at least one of the following numbers is transcen-
dental:

ee, ee
2

, ee
3

, ee
4

.

Restatement of the Six Exponentials Theorem. Two algebraically inde-
pendent exponential functions, ex1z and ex2z cannot be simultaneously algebraic
at three Q−linearly independent complex numbers y1, y2, and y3.

Sketch of proof The proof of the Six Exponentials Theorem closely parallels
Schneider’s solution of Hilbert’s seventh problem, so we will be brief.

Step 1. Assume that all of the values exiyj are algebraic. Thus for any P (x, y) ∈
Z[x, y], we notice that the values of the function F (z) = P (ex1z, ex2z) will be
algebraic when evaluated at y1, y2, y3, or any Z−linear combination of them.
That is, for any integers k1, k2, and k3, the quantity F (k1y1 + k2y2 + k3y3) is
an algebraic number.

Step 2. Apply Siegel’s Lemma to find a nonzero integral polynomial

P (x, y) =

D1−1∑
m=0

D2−1∑
n=0

amnx
myn ,

having “modestly sized” integral coefficients, such that if we let

F (z) = P (ex1z, ex2z) ,

then F (z) = 0 for all z ∈ {k1y1 + k2y2 + k3y3 : 0 ≤ kj < K}. Before proceeding
to the next step, we note that since the two functions ex1z and ex2z, which we
compose with P (x, y) in order to produce F (z), are so similiar, it is not natural
to take D1 > D2 or D2 > D1. Thus we now declare that D1 = D2 and denote
this common value by D.

Step 3. As we have seen there are several ways to obtain a nonzero value that
will, if everything is set up correctly, lead to a contradictory nonzero integer.
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In this proof we use a zeros estimate based on the observation that F (z) is
not identically zero. Specifically, the following lemma ensures that the function
F (z) has an advantageous nonzero value.

Lemma. There exists a positive integer M such that

F (k1y1 + k2y2 + k3y3) = 0 ,

for all 0 ≤ kj < M , while there exists some triple k∗1 , k
∗
2 , k
∗
3 , satisfying 0 ≤ k∗j ≤

M , such that
F (k∗1y1 + k∗2y2 + k∗3y3) 6= 0 .

(The proof of this lemma is an exercise at the end of the chapter.)

Step 4. It is possible to use the nonzero algebraic number F (k∗1y1+k∗2y2+k∗3y3)
to obtain a nonzero integer whose absolute value is less than 1.

The Schneider-Lang Theorem.

In this section we consider a conjecture which is an natural analogue of
Hilbert’s, albeit for two functions. This conjecture captures the essence of
Hermite’s result, the Hermite-Lindemann Theorem, and the Gelfond–Schneider
Theorem.

First Conjecture. Two algebraically independent functions should not be si-
multaneously algebraic at a point, unless there is some special reason. That is,
if f(z) and g(z) are algebraically independent functions, then for just about any
z0 ∈ C, at least one of the values f(z0) or g(z0) should be a transcendental
number.

Our earlier example of the function f(z) = e(z−α1)(z−α2)···(z−αL), which is
algebraically independent of the function g(z) = z, shows the need for the phrase
”unless there is some special reason” in the above conjecture. That said, many
of our previous results point to the truth of this admittedly vague conjecture;
for example, Hermite’s theorem implies that z and ez are not simultaneously
algebraic, except at z = 0.

Refined Conjecture. Two algebraically independent functions cannot simul-
taneously be algebraic at very many different complex numbers.

Both our reframing of the Gelfond-Schneider Theorem and the Six Exponen-
tials Theorem point to the linear independence of the points under consideration
as being a reasonable hypothesis. While this point of view remains an important
one, there is another point of view that leads to an important result. This point
of view is to refine the phrase ”simultaneously algebraic” in the above refined
conjecture.
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Before we examine this portion of the Refined Conjecture we point out that
the example we gave above indicates that the number of points at which the two
functions are simultaneously algebraic must depend on some specific properties
of the functions themselves. Specifically, if P (z) is any nonzero polynomial
with rational coefficients, of degree d ≥ 1, then the algebraically independent
functions

f(z) = z and g(z) = eP (z)

are simultaneously algebraic at the d zeros of P (z). So in this example “too
many” must be connected with the degree of P (x).

What cannot be taken away from the above example is how the degree of
P (z) plays a role in determining an upper bound on the number of simultaneous
algebraic points for z and eP (z). There is a clue in our earlier zeros estimate based
on the order of growth of the function. Recall that that result established that
if a nonzero entire function F (z) satisfies |F |R ≤ eR

κ

for all sufficiently large R,
then F cannot have more than Rκ+ε zeros in the disks of all complex numbers
z satisfying |z| ≤ R a R approaches infinity. This result implies that for any
particular complex number β, such a nonconstant entire function F (z) satisfies

card
{
z ∈ C : F (z) = β with |z| ≤ R

}
< Rκ+ε .

So the number of times such an entire function can attain any particular
algebraic value is bounded by a function of R and κ. Extending this obser-
vation, it is reasonable to imagine that κ might influence how many times a
particular entire function takes values in any fixed set of algebraic numbers, or
more generally in any finite extension K of Q.

We have never formally described the exponents κ that satisfy the above.
To do so we first say that an entire function F (z) has finite order of growth if
there exists a positive constant κ such that for all sufficiently large |z|,

|f(z)| < e|z|
κ
.

In the above situation f(z) is said to have a finite order of growth; we then
define the order of f(z) by

ρ = inf
{
κ > 0 : |f(z)| < e|z|

κ
for all sufficiently large |z|

}
.

When considering the simultaneous algebraic values of two algebraically in-
dependent functions, the orders of growth of the two functions could play a role.
Surprisingly, however, we will see that if we wish to give an upper bound for
the number of points in a disk at which two algebraically independent functions
simultaneously take values from a prescribed collection of algebraic numbers,
neither the radius of the disk nor the cardinality of the set of algebraic values
appears in our bound. Instead, the upper bound depends only on the degree of
the field extension of Q containing the given set of algebraic numbers and the
orders of growth of the functions. Stated only slightly more precisely, if f1(z)
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and f2(z) are sufficiently nice functions with finite orders of growth ρ1 and ρ2,
respectively, and K is an algebraic extension of Q of degree d, then

card
{
z ∈ C : f1(z) ∈ K and f2(z) ∈ K

}
≤ (ρ1 + ρ2)d .

We are now able to produce a special case of an important result due to
Serge Lang (1964) known as the Schneider–Lang Theorem. In 1949 Schneider
proved two general theorems concerning two algebraically independent function
being simultaneously algebraic at numbers, but Lang’s formulation is particu-
larly succient. In this version the theorem deals with meromorphic functions
with finite orders of growth that satisfy polynomial differential equations with
algebraic coefficients. We first restrict our attention to entire functions; we will
return to the more general formulation of the Schneider–Lang Theorem below.

Theorem (A First Schneider–Lang Theorem) Suppose that f1(z) and
f2(z) are two algebraically independent entire functions with finite orders of
growth, each of which satisfies an algebraic polynomial differential equation.
That is, there exists a number field F and a finite collection of functions

f3(z), f4(z), . . . , fJ(z)

such that the differential operator d
dz maps the ring F [f1(z), f2(z), . . . , fJ(z)]

into itself. Then for any number field E containing F ,

card
{
z ∈ C : f1(z) ∈ E, f2(z) ∈ E, . . . , fJ(z) ∈ E

}
is finite.

Moreover, if ρ1 denotes the order of growth of f1(z) and ρ2 denotes the order
of growth of f2(z), then one can give a quantitive version of this result, namely,

card
{
z ∈ C : f1(z) ∈ E, f2(z) ∈ E, . . . , fJ(z) ∈ E

}
≤ (ρ1 + ρ2)[E : Q] .

Before outlining the proof of this result, let’s see how even this special form
of the Schneider–Lang Theorem can be applied to produce many of our earlier
results.

The deduction of the Gelfond–Schneider Theorem from the Schneider–Lang The-
orem. As before we begin by assuming that each of α, β and αβ is algebraic
and let E be the number field given by E = Q

(
α, β, αβ

)
. If we put f1(z) = ez

and f2(z) = eβz. Since β is irrational, we know that f1(z) and f2(z) are al-
gebraically independent functions. Also, each of these functions satisfies an
algebraic differential equation,

dy

dz
= y and

dy

dz
= βy ,
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respectively. So if we take K = Q(β) ⊆ E, then we see that K[f1(z), f2(z)]
is closed under differentiation. Thus we may apply the First Schneider–Lang
Theorem and deduce that there are only finitely many points z ∈ C such that
f1(z) ∈ E and f2(z) ∈ E. However, we note that for all integers k,

f1(k logα) = αk ∈ E and f2(k logα) =
(
αβ
)k ∈ E ,

which contradicts the previous sentence. Therefore we conclude that αβ is
transcendental.

A sketch of the proof of the First Schneider-Lang Theorem We fix a number
field E and let

Ω = {z ∈ C : f1(z) ∈ E, f2(z) ∈ E, . . . , fJ(z) ∈ E} .

Our aim is to show that Ω is a finite set. We establish this by assuming that
{w1, w2, . . . , wL} is a set of distinct elements from Ω and showing that L cannot
be too large.

An application of Siegel’s Lemma allows us to solve a system of linear equa-
tions to find a nonzero polynomial P (x, y) such that the function F (z) =
P (f1(z), f2(z)) vanishes at each of the points w1, w2, . . . , wL, each with mul-
tiplicity T . Since f1(z) and f2(z) are algebraically independent functions, F (z)
is not identically zero. Thus we let t0 be the smallest positive integer such that
there exists an index l0, 1 ≤ l0 ≤ L, satisfying

dt0

dzt0
F (wl0) 6= 0 .

If we let Γ = dt0

dzt0 F (wl0), then by the hypothesis it follows that there exists a
polynomial P (x1, x2, . . . , xJ) with coefficients in E such that

Γ = P (f1(wl0), f2(wl0), . . . , fJ(wl0)).

Thus we conclude that Γ is an algebraic number in E. Instead of dealing with
having to multiply by a denominator of Γ to obtain an algebraic integer we
henceforth assume Γ is an algebraic integer.

Then if we let Γ1(= Γ),Γ2, . . . ,Γd denote the conjugates of Γ we know that

N = Γ1 × Γ2 × · · · × Γd,

is a rational integer.
It is relatively straightforward to estimate each of the values |Γj |, j = 2, . . . , d.

As we have before we may employ the Maximium Modulus Principle to estimate
|Γ1|. Specifically, we consider the function

G(z) =
F (z)∏L

l=1(z − wl)t0−1
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on a disk of radius t
1/(ρ1+ρ2)
0 to get an upper bound for |Γ| involving ρ1, ρ2, and

deg(Γ). Applying our bounds it is possible to show that if L > (ρ1 +ρ2)[E : Q],
then the integer N satisfies 0 < |N | < 1. This contradiction establishes the
result.

As we have already noted the full Schneider-Lang Theorem applies not just
entire functions but meromorphic. The order of growth of a meromorphic func-
tion f(z) can be defined in one of two ways, and both depend on the observation
that the poles of a meromorphic function are isolated. (If the poles of a par-
ticular meromorphic function were not isolated, then the reciprocal function,
which is also a meromorphic function, would have a convergent set of zeros and
thus must be identically zero.) This tells us that we can find a non-zero entire
function g(z) whose zeros are precisely the poles of f(z). One then defines the
order of growth of f(z) to be the order of growth of the entire function g(z)f(z).

Another way to define the order of growth of a meromorphic function that
has a finite order of growth, which yields the same order of growth as the above
definition, is to say that f has finite order of growth if there exists a number κ
so that

max{|f(z)| : |z| = R} ≤ eR
κ

,

for all values of R that avoid the poles of f(z). The infimum of all such κ is the
order of growth of the function.

More formally, the order of growth of a meromorphic function f(z) equals

lim sup
R→∞

log log max{|f(z)| : |z| = R}
logR

.

The Schneider–Lang Theorem Let f1(z) and f2(z) denote two algebraically
independent meromorphic functions with finite orders of growth ρ1 and ρ2,
respectively. If f1(z) and f2(z) satisfy polynomial algebraic differential equa-
tions over a number field F ; that is, there exists a finite collection of func-
tions f3(z), f4(z), . . . , fJ(z) such that the differential operator d

dz maps the ring
F [f1(z), f2(z), . . . , fJ(z)] into itself. Then for any number field E containing F ,

card
{
z ∈ C : f1(z) ∈ E, . . . , fJ(z) ∈ E

}
≤ (ρ1 + ρ2)[E : Q] .

While we do not prove the Schneider-Lang Theorem, we do remark that
its proof is essentially an elaboration of our sketch of the proof of the First
Schneider-Lang theorem. The new idea, when making analytic estimates, is to
multiply each of the meromorphic functions by the appropriate entire function
that vanishes at its poles.

Elliptic Functions
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The above section provided a statement of the Schnieder-Lang Theorem for
meromorphic functions but did not consider any examples. We end this chapter
with arguably the second most important function in number theory, behind the
usual exponential function ez, the meromorphic Weierstrass ℘−function. Just
as there are several characterizations of ez, there are several characterizations
of ℘(z). We will use these characterizations/properties in establishing transcen-
dence results associated with ℘(z) and, given what we have already seen, they
are not surprisingly both analytic and algebraic in nature.

A series representation for ℘(z). For any nonzero w ∈ C, we know that there
exists an entire function that is periodic modulo Zw; namely the function f(z) =

e
2πi
w z. A critical difference between the function ℘(z) and ez is that ℘(z) has two

Q-linearly independent periods (such a function is said to be doubly periodic).
Moreover, just as there is an exponential function periodic modulo Zw for any
nonzero w ∈ C, given any two Q-linearly independent complex numbers w1 and
w2 satisfying w2/w1 6∈ R, there exists a Weierstrass ℘-function that is periodic
modulo the lattice W = Zw1 + Zw2 ⊆ C.

Liouville demonstrated that an entire, bounded function must be a constant.
It follows that the only doubly periodic functions that can be represented by
an everywhere-convergent power series are the constant functions. Thus there
cannot exist as attractive a power series for ℘(z) as there is for ez.

However, the complex numbers for which any non-constant, doubly periodic
is not defined must form a discrete subset in the complex plane. The Weierstrass
℘-function is normalized so that the points at which it is not defined are precisely
its periods. Moreover, the behavior of ℘(z) at the periods w ∈ W will be well
understood—we will see that it has essentially the same behavior as the function
1/(z − w)2 for z near w.

We do not develop this theory here but it more-or-less follows from the above
brief discussion that the Weierstrass ℘-function is represented by a series of the
form:

℘(z) =
1

z2
+
∑
w∈W ′

(
1

(z − w)2
− 1

w2

)
,

where W ′ denotes the nonzero elements of W = Zw1 + Zw2.
Although it is not immediately obvious from the above series representation,

℘(z) is indeed a periodic function with respect to the lattice W . (This assertion
can be established through a simple trick. Define two new functions by

f1(z) = ℘(z + w1)− ℘(z) and f2(z) = ℘(z + w2)− ℘(z) ,

where W = Zw1 +Zw2. Then f1(z) and f2(z) are meromorphic functions whose
derivatives are identically zero; thus, they are constant functions. Evaluating
f1(−w1/2) and f2(−w2/2), and using the easily observed fact that ℘(z) is an
even function demonstrates that these functions are identically zero.)

The derivative of ℘(z). The first step in uncovering a relationship between ℘(z)
and ℘′(z) is to look at the so-called Laurent series of ℘(z) centered at z = 0.
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Since ℘(z) is an even function we can deduce that the coefficients of the odd
powers of z must all equal 0. Thus we may express the Laurent series for ℘(z)
about z = 0 as

℘(z) =
1

z2
+ c0 + c2z

2 + c4z
4 + · · · .

But we also know that

℘(z)− 1

z2
=
∑
w∈W ′

(
1

(z − w)2
− 1

w2

)
,

and the right-hand side of the above identity vanishes at z = 0, so we may
conclude that c0 = 0. Thus

℘(z) =
1

z2
+ c2z

2 + c4z
4 + · · · ,

formal differentiation of which yields the convergent series

℘′(z) = − 2

z3
+ 2c2z + 4c4z

3 + · · · .

It is a fairly difficult exercise in most graduate complex variables courses to
show that it follows from the above two expressions that for all complex numbers
z 6∈W ,

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 ,

where g2 and g3 have the explicit representations

g2 = 20c2 = 60
∑
w∈W ′

1

w4
g3 = 28c4 = 140

∑
w∈W ′

1

w6
.

It is part of the theory of that the polynomial 4x3− g2x− g3 has distinct roots.

An application of the Schneider-Lang Theorem to ℘(z). With this brief in-
troduction we are already in a position to deduce transcendence results about
numbers associated with a Weierstrass ℘−function from the Schneider-Lang
Theorem. Many of the results it is possible to obtain in this way were es-
tablished by Schnieder in 1934, before the formalization of the Schneider-Lang
Theorem. We first consider one of Schneider’s results form 1934, an elliptic
analogue of Lindemann’s Theorem.

Theorem Suppose that the coefficients g2 and g3 of the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 ,

are algebraic. Let W denote the lattice of periods for ℘(z). Then every nonzero
element of W is transcendental.

We note for historical accuracy that in 1932 Siegel proved that if the coefficients
g2 and g3 of the differential equation

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 ,
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are algebraic, and W = Zw1 + Zw2, then either w1 or w2 is transcendental.

Our deduction of the above theorem from the Schneider-Lang Theorem re-
quires the following elementary lemma.

Lemma. Suppose that we factor the polynomial differential equation of ℘(z)
over the complex numbers as

℘′(z)2 = 4℘3(z)− g2℘(z)− g3 = 4(℘(z)− e1)(℘(z)− e2)(℘(z)− e3). (2)

If we write the period lattice for ℘(z) as W = Zw1 +Zw2, then reordering e1, e2,
and e3, if necessary, it follows that

℘
(w1

2

)
= e1 , ℘

(w2

2

)
= e2 , and ℘

(
w1 + w2

2

)
= e3 .

Proof. For simplicity let w3 = w1 + w2. In view of the factorization (2), we
need only show that for each n = 1, 2, 3, ℘′(wn2 ) = 0. Since ℘(z) is even, ℘′(z)
is an odd function, and thus, using the fact that wn ∈W,

℘′
(wn

2

)
= ℘′

(wn
2
− wn

)
= ℘′

(
−wn

2

)
= −℘′

(wn
2

)
.

This establishes the lemma.

The proof of the transcendence of the nonzero periods of a Weierstrass ℘−function
with algebraic g2 and g3 then follows from applying the Schneider-Lang Theorem
to the functions f1(z) = z and f2(z) = ℘(z) at the points w/2, w/2 + w,w/2 +
2w . . . . The one complication is that w/2 might also be in W, and so be a pole
of ℘(z) (in other words it is very well possible that w = mw1 +nw2 where both
m and n are even). If this is the case divide w by a sufficiently large power of 2,
w
2k

= m′w1 + n′w2, with not both m′ and n′ even. Then let w′ = m′w1 + n′w2

and consider z and ℘(z) at the points w′/2, w′/2 + w′, w′/2 + 2w′, . . . .. The
transcendence of w follows from the transcendence of w′.

Corollary. The real number
Γ(1/4)

2

√
π

is transcendental.

There are several equivalent definitions of the gamma function; perhaps the
simplest is as an improper integral: For any complex number z with Re(z) > 0,
we define

Γ(z) =

∫ ∞
0

e−ttz−1 dt .
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While it is not obvious from this definition, it can be shown that Γ(z) is defined
and analytic for all z with positive real part.

In order to establish the above corollary we need two identities for the Γ
function, which we state without proof.

First identity. For positive real numbers a and b,

Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0

xa−1(1− x)b−1 dx , (3)

and,
Second identity. For a complex number z for which neither z nor 1 − z is a
negative integer,

Γ(z)Γ(1− z) =
π

sin(πz)
. (4)

With these two identities in hand the proof of the above corollary depends

on showing that Γ(1/4)2√
π

is algebraically dependent on an explicity computed

period of the specific elliptic curve

y2 = 4x(x− 1)(x+ 1) = 4x3 − 4x .

In order to connect Γ(1/4)2√
π

with a period of ℘(z), we show that the improper

integral

I =

∫ ∞
1

dx√
4x3 − 4x

(5)

equals one-half of a nonzero period of the elliptic curve y2 = 4x3−4x. Following

this we show that the numbers I and Γ(1/4)2√
π

are algebraically dependent.

Lemma The number 2I is a nonzero period of the Weierstrass ℘-function that
satisfies the differential equation y′ = 4y3 − 4y.

Proof. To establish this lemma, we first claim that the Weierstrass ℘-function
associated with the differential equation(

dy

dx

)2

= 4y3 − 4y

inverts the integral of (5). This means that

z =

∫ ∞
℘(z)

dx√
4x3 − 4x

,

(where the path of integration is any simple curve that does not contain a zero
of the denominator, that is, which does not contain the numbers −1, 0, and 1).
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We offer a sketch of this claim that is perhaps not a rigorous as it could
be. Let ζ be a variable. Then we can express z as a function of ζ through the
integral

z =

∫ ∞
ζ

dx√
4x3 − 4x

, (6)

with the same restriction on the path of integration. Differentiation of this
expression yields

dζ

dz
=
√

4ζ3 − 4ζ

If we square this we see that ζ, as a function of z, satisfies the same differential
equation as the Weierstrass elliptic function. Thus

ζ = ℘(z + a) for some constant a.

But a can be determined by examining the limit of the integral as ζ approaches
∞. As ζ →∞, we have that z → 0. Thus a must be pole w for ℘(z). Recalling
that ℘(z) is periodic modulo its lattice of poles W , we see that ζ = ℘(z +w) =
℘(z), which implies the validity of (6).

We now return to the proof of the lemma. The lower limit of integration,
x = 1, in the integral I from (6) is a zero of the polynomial 4x3 − 4x, and thus
we have that for some n, ℘(wn/2) = 1. Therefore

I =

∫ ∞
℘(wn/2)

dx√
4x3 − 4x

=
wn
2

,

and so 2I = wn ∈W \ {0}, which completes our proof.

Since 2I is a nonzero period of a Weierstrass ℘−function where g2 and g3

are algebraic, e know that I is transcendental. We next show how this leads to

the transcendence of Γ(1/4)2√
π

.

Claim. The numbers I and Γ(1/4)2√
π

are algebraically dependent.

We establish this claim by making the change of variables x = 1√
u

in the integral

representation for I. This leads to

I = −1

2

∫ 0

1

u−
3
2 du√

u−
3
2 − u− 1

2

=
1

2

∫ 1

0

u−
3
4 (1− u)−

1
2 du .

This last integral is precisely the one appearing in the first identity above. So
we may conclude that

1

2

∫ 1

0

u−
3
4 (1− u)−

1
2 du =

Γ( 1
4 )Γ( 1

2 )

2Γ( 3
4 )

.
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We leave it as an exercise to show that the Claim then follows through an
application of the second identity given, which should lead you to the equation

I =
1

2
√

2

Γ( 1
4 )2

√
π

. (7)

Additional remarks about ℘(z). Unfortunately we do not yet know enough about
the ℘−function to deduce elliptic analogues of the Hermite-Lindemann or Gelfond-
Schneider theorems from the Schneider-Lang Theorem. We are missing two
things. The first is a ℘−version of the addition formula ex+y = exey that holds
for the usual exponential function. As one might expect the analogous formula
for ℘(z) is a more complicated matter. Indeed, it is:

℘(z1 + z2) = −℘(z1)− ℘(z2) +
1

4

(℘′(z2)− ℘′(z1)

℘(z2)− ℘(z1)

)2

. (8)

The verification of this formula is an application of Liouville’s result that an
bounded, entire function must be constant. (We outline this as an exercise.)

The second missing piece of mathematics is an elliptic analogue of the al-
gebraic independence of ez and eβz when β is an irrational number. We do
not propose to develop this theory here but only report that if β is a complex
number then ℘(z) and ℘(βz) are algebraically independent if and only if βW is
not contained in W .

Theorem (Elliptic version of the Hermite-Lindemann Theorem) Suppose α is
a nonzero algebraic number and that ℘(z) has algebraic g2 and g3. Then ℘(α)
is transcendental.

Proof. Apply the Schneider-Lang Theorem to the functions z and ℘(z) at the
points α, 2α, 3α, . . . .

Theorem (Elliptic version of the Gelfond-Schneider Theorem) Suppose β is an
algebraic number so that βW is not contained in W . Suppose further that ℘(z)
has algebraic g2 and g3. If ℘(u) is algebraic then ℘(βu) is transcendental.

Proof A thought-provocating exercise.

Exercises.

1. Suppose F (z) is a nonzero, meromorphic function. Suppose y1, y2, y3

are Q-linearly independent complex numbers. Show that there exists a positive
integer M such that

F (k1y1 + k2y2 + k3y3) = 0 ,

for all 0 ≤ kj < M , while there exists some triple k∗1 , k
∗
2 , k
∗
3 , satisfying 0 ≤ k∗j ≤

M , where
F (k∗1y1 + k∗2y2 + k∗3y3) 6= 0 .
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2. In this exercise you will be asked to deduce the addition formula (8). Fix
a y 6∈W and define the function f(z) by

f(z) = ℘(z + y) + ℘(z)− 1

4

(℘′(z)− ℘′(y)

℘(z)− ℘(y)

)2

.

First, show that the function

℘′(z)− ℘′(y)

℘(z)− ℘(y)

has a pole of order 1 at any element of the set

Wy = {w,w + y, w − y : w ∈W} .

Then conclude that f(z) does not have a pole at any point in Wy. Second,
show that f(z) is a bounded entire function, and letting y → 0, conclude that
f(z) = −℘(y).

3 . Suppose ℘(z) is a elliptic function with g2 and g3 being algebraic. Let w
be a nonzero period of ℘(z). Show that both ew and ℘(π) are transcendental.
(Warning: Establishing the transcendence of the second value is more subtle
than the transcendence of the first.)

4. Prove the zeros estimate used in the sketch of the proof of the Schneider-
Lang Theorem.
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