Math 8174: Homework 7

Due April 29, 2009

1. Prove the Lower Bound Lemma: For $P: G \rightarrow \mathbb{R}_{\geq 0}$,

$$
\|P-\pi\| \geq \frac{1}{2|G|} \sum_{\substack{\lambda \in \hat{G} \\ \chi^{\lambda} \neq \mathbb{1}}} \chi^{\lambda}(1) \operatorname{tr}(\hat{P}(\lambda) \overline{\hat{P}}(\lambda)=1) .
$$

2. For each of the following probabilities $P: G \rightarrow \mathbb{R}_{\geq 0}$, the corresponding transition matrix M_{P} is conjugate to a diagonal matrix D. Find that D.
(a) $G=C_{r}=\{0,1,2, \ldots, r-1\}, r$ odd,

$$
P(j)= \begin{cases}1 / 2, & \text { if } j \in\{1, r-1\}, \\ 0, & \text { otherwise } .\end{cases}
$$

(b) $G=S_{n}$,

$$
P(w)= \begin{cases}2 / n^{2}, & \text { if } w=(i, j) \\ 1 / n, & \text { if } w=1 \\ 0, & \text { otherwise }\end{cases}
$$

3. Describe (as precisely as possible) the walk on partitions implied by

$$
P(w)= \begin{cases}2 / n^{2}, & \text { if } w=(i, j) \\ 1 / n, & \text { if } w=1, \\ 0, & \text { otherwise }\end{cases}
$$

