Math 8174: Homework 6

Due April 13, 2009

1. Find all the irreducible $U_3(\mathbb{F}_5)$ -modules for

$$U_{3}(\mathbb{F}_{5}) = \left\{ \left(\begin{array}{ccc} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{array} \right) \ \Big| \ a, b, c \in \mathbb{F}_{5} \right\}.$$

Hint: Note that the group generated by the last column is abelian and is acted on by the group generated by a's.

- 2. We could have proved our classification theorem of G(r, 1, n)-modules in the same way we proved the analogous result for G(1, 1, n). The key step to this approach is finding the correct analogue of Murphy-Jucys elements.
 - (a) Find an analogue to the Murphy-Jucys elements for G(r, 1, n). That is, find $m_k, j_l \in \mathbb{C}G(r, 1, n)$, such that if λ is an r-tuple of partitions and T a tableau of shape λ , then

$$m_k v_T = c(T(k))v_T$$
 and $j_l v_T = e^{2\pi i \log_T(j)/r} v_T$.

- (b) Explain how these elements imply that for $\lambda, \mu \in \hat{G}_1$, we have $G(r, 1, n)^{\lambda} \cong G(r, 1, n)^{\mu}$ if and only if $\lambda = \mu$.
- 3. A character $\chi: G \to \mathbb{C}$ is called *real-valued* if $\chi(g) \in \mathbb{R}$ for all $g \in G$.
 - (a) For which of the G(r, 1, n) are all characters real-valued?
 - (b) Let $\chi : G \to \mathbb{C}$ be a real-valued, irreducible character, let $\psi : G \to \mathbb{C}$ be an irreducible character, and let $H \subseteq G$ be a subgroup. Show that the module $V_{\chi} \otimes V_{\psi}$ contains the trivial module of G if and only if $\psi = \chi$. (See midterm for a definition of $V_{\chi} \otimes V_{\psi}$).