Math 8174: Homework 6

Due April 13, 2009

1. Find all the irreducible $U_{3}\left(\mathbb{F}_{5}\right)$-modules for

$$
U_{3}\left(\mathbb{F}_{5}\right)=\left\{\left.\left(\begin{array}{ccc}
1 & a & c \\
0 & 1 & b \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{F}_{5}\right\} .
$$

Hint: Note that the group generated by the last column is abelian and is acted on by the group generated by a 's.
2. We could have proved our classification theorem of $G(r, 1, n)$-modules in the same way we proved the analogous result for $G(1,1, n)$. The key step to this approach is finding the correct analogue of Murphy-Jucys elements.
(a) Find an analogue to the Murphy-Jucys elements for $G(r, 1, n)$. That is, find $m_{k}, j_{l} \in$ $\mathbb{C} G(r, 1, n)$, such that if λ is an r-tuple of partitions and T a tableau of shape λ, then

$$
m_{k} v_{T}=c(T(k)) v_{T} \quad \text { and } \quad j_{l} v_{T}=e^{2 \pi i \operatorname{loc}_{T}(j) / r} v_{T} .
$$

(b) Explain how these elements imply that for $\lambda, \mu \in \hat{G}_{1}$, we have $G(r, 1, n)^{\lambda} \cong G(r, 1, n)^{\mu}$ if and only if $\lambda=\mu$.
3. A character $\chi: G \rightarrow \mathbb{C}$ is called real-valued if $\chi(g) \in \mathbb{R}$ for all $g \in G$.
(a) For which of the $G(r, 1, n)$ are all characters real-valued?
(b) Let $\chi: G \rightarrow \mathbb{C}$ be a real-valued, irreducible character, let $\psi: G \rightarrow \mathbb{C}$ be an irreducible character, and let $H \subseteq G$ be a subgroup. Show that the module $V_{\chi} \otimes V_{\psi}$ contains the trivial module of G if and only if $\psi=\chi$. (See midterm for a definition of $V_{\chi} \otimes V_{\psi}$).

