Math 8174: Homework 4

Due March 4-6, 2009

- 1. Let $D_{2r} = G(r, r, 2)$ be the dihedral group of order 2r.
 - (a) Show that D_{2r} is isomorphic to

$$\langle s_1, s_2 \mid s_1^2 = s_2^2 = 1, (s_1 s_2)^r = 1 \rangle.$$

- (b) Completely classify the irreducible D_{2r} -modules. Hints: All irreducible D_{2r} -modules have dimension ≤ 2 . Treat r even and r odd separately.
- (c) Find the characters of the irreducible D_{2r} -modules.
- 2. Let V be the natural module of S_n (see Homework 3, Problem 4).
 - (a) Compute the character $\chi_V : S_n \to \mathbb{C}$ of V.
 - (b) Deduce the character $\chi^{(n-1,1)}$ of the irreducible S_n -module $S^{(n-1,1)}$.
- 3. Show that every S_n -module gives a natural irreducible G(r, 1, n)-module (construct the corresponding module). Show that not all irreducible G(r, 1, n)-modules are obtained in this way.
- 4. Let (P_w, Q_w) be the pair of tableaux obtained from $w \in S_n$ by the RSK-correspondence.
 - (a) Find w, when the shape of P_w is (1^n) and (n),
 - (b) What does the number of rows of $sh(P_w)$ say about the permutation w?
 - (c) What does the length of the first row of $sh(P_w)$ say about the permutation w?