Math 8174: Homework 4

Due March 4-6, 2009

1. Let $D_{2 r}=G(r, r, 2)$ be the dihedral group of order $2 r$.
(a) Show that $D_{2 r}$ is isomorphic to

$$
\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=1,\left(s_{1} s_{2}\right)^{r}=1\right\rangle .
$$

(b) Completely classify the irreducible $D_{2 r}$-modules.

Hints: All irreducible $D_{2 r}$-modules have dimension ≤ 2. Treat r even and r odd separately.
(c) Find the characters of the irreducible $D_{2 r}$-modules.
2. Let V be the natural module of S_{n} (see Homework 3, Problem 4).
(a) Compute the character $\chi_{V}: S_{n} \rightarrow \mathbb{C}$ of V.
(b) Deduce the character $\chi^{(n-1,1)}$ of the irreducible S_{n}-module $S^{(n-1,1)}$.
3. Show that every S_{n}-module gives a natural irreducible $G(r, 1, n)$-module (construct the corresponding module). Show that not all irreducible $G(r, 1, n)$-modules are obtained in this way.
4. Let $\left(P_{w}, Q_{w}\right)$ be the pair of tableaux obtained from $w \in S_{n}$ by the RSK-correspondence.
(a) Find w, when the shape of P_{w} is $\left(1^{n}\right)$ and (n),
(b) What does the number of rows of $\operatorname{sh}\left(P_{w}\right)$ say about the permutation w ?
(c) What does the length of the first row of $\operatorname{sh}\left(P_{w}\right)$ say about the permutation w ?

