Math 8174: Homework 3

Due February 18-20, 2009

1. Suppose $G_{1}, G_{2}, \ldots, G_{r}$ are the irreducible G-modules. The degree sequence of a group G is the sequence $\left(\operatorname{dim}\left(G_{1}\right), \operatorname{dim}\left(G_{2}\right), \ldots, \operatorname{dim}\left(G_{r}\right)\right)$. Suppose $|G|=20$.
(a) Show that G has less than 10 possible degree sequences.
(b) It turns out that the $\operatorname{dim}\left(G_{i}\right)$ divides $|G|$ (we will hopefully show this later in the class). Using this fact, show that G must have at least 4 different one-dimensional modules.
2. Let $Z(G)$ denote the center of G.
(a) Show that if G has a faithful irreducible representation (an injective irreducible representation), then $Z(G)$ is cyclic.
(b) Is it generally true that the center of $\mathbb{C} G$ is $\mathbb{C} Z(G)$?
3. Let $n \in \mathbb{Z}_{\geq 1}$. Let λ be a partition of n. Let

$$
V^{\lambda}=\mathbb{C}-\operatorname{span}\left\{v_{T} \mid T \text { a standard tableau of shape } \lambda\right\} .
$$

For $i \in\{1,2, \ldots, n-1\}$, define

$$
s_{i} v_{T}= \begin{cases}v_{s_{i}(T)}, & \text { if } s_{i}(T) \text { is standard, } \\ v_{T}, & \text { otherwise } .\end{cases}
$$

Is V^{λ} an S_{n}-module under this action? If so, what is its decomposition into irreducibles?
4. The natural module of S_{n} is the vector space

$$
V=\mathbb{C}-\operatorname{span}\left\{e_{1}, e_{2}, \ldots, e_{n}\right\},
$$

with the action

$$
\begin{array}{ccc}
S_{n} \times V & \longrightarrow & V \\
\left(w, e_{i}\right) & \mapsto & e_{w(i)}
\end{array}
$$

Decompose V into irreducible S_{n}-modules.
5. Given a vector space V, let

$$
V^{\otimes k}=\underbrace{V \otimes V \otimes \cdots \otimes V}_{k \text { terms }} .
$$

The (infinite) group $\mathrm{GL}_{n}(\mathbb{C})$ acts on $\left(\mathbb{C}^{n}\right)^{\otimes r}$ by

$$
g\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}\right)=g v_{1} \otimes g v_{2} \otimes \cdots \otimes g v_{n}, \quad \text { for } g \in \mathrm{GL}_{n}(\mathbb{C}), v_{i} \in \mathbb{C}^{n} .
$$

It turns out that for $r \leq n$,

$$
\operatorname{End}_{\operatorname{GL}_{n}(\mathbb{C})}\left(\left(\mathbb{C}^{n}\right)^{r}\right) \cong \mathbb{C} S_{r},
$$

where

$$
w\left(v_{1} \otimes v_{2} \otimes \cdots \otimes v_{r}\right)=v_{w(1)} \otimes v_{w(2)} \otimes \cdots \otimes v_{w(r)}, \quad \text { for } w \in S_{r}, v_{i} \in \mathbb{C}^{n}
$$

Show that for $n>2$,

$$
\operatorname{End}_{\operatorname{GL}_{n}(\mathbb{C})}\left(\left(\mathbb{C}^{n}\right)^{2}\right) \cong \mathbb{C} S_{2}
$$

Hint: One can use an elementary argument using heavily the subgroup $G(2,1, n) \subseteq$ $\mathrm{GL}_{n}(\mathbb{C})$.

