Math 6350: Homework 5

Due: Friday, November 9

A. The following exercises make use of (and define) a sequence $\left\{B_{n}\right\}_{n \geq 1}$ known as the Bernoulli numbers.
V.1.3.4. Show that close to zero,

$$
\frac{1}{e^{z}-1}=\frac{1}{z}-\frac{1}{2}+\sum_{n \geq 1}(-1)^{n-1} \frac{B_{n}}{(2 n)!} z^{2 n-1}
$$

for some (unspecified) integers $B_{1}, B_{2}, \ldots \in \mathbb{Z}$. Calculate B_{1}, B_{2}, and B_{3}.
V.2.1.5. Show that

$$
\sum_{n \geq 1} \frac{1}{n^{2 k}}=2^{2 k-1} \frac{B_{k}}{(2 k)!} \pi^{2 k}
$$

B.
V.2.1.4. Find a closed form for

$$
\sum_{-\infty}^{\infty} \frac{1}{(z+n)^{2}+a^{2}}
$$

V.2.2.1. Show that

$$
\prod_{n=2}^{\infty}\left(1-\frac{1}{n^{2}}\right)=\frac{1}{2}
$$

C. (1) Prove uniqueness in Weierstrass' Theorem.
V.2.3.2. Prove that

$$
\sin (\pi(z+k))=e^{\pi z \cot (\pi k)} \prod_{-\infty}^{\infty}\left(1+\frac{z}{n+k}\right) e^{-\frac{z}{n+k}}, \quad \text { for } k \in \mathbb{Z}
$$

D.
V.2.4.3. What are the residues of $\Gamma(z)$.
(2) Show that for $x>0$,

$$
e^{-x}=\frac{1}{2 \pi i} \int_{\gamma} x^{-s} \Gamma(s) d s
$$

where $\gamma(t)=1+i t,-\infty \leq t \leq \infty$.

