Math 6350: Homework 3

Due: Friday, October 5

A. Let

$$
\begin{aligned}
& \Delta_{1}=\{z \in \mathbb{C}| | z \mid<2\} \\
& \Delta_{2}=\left\{z \in \mathbb{C}| | z-i \left\lvert\,<\frac{1}{2}\right.\right\}
\end{aligned}
$$

Evaluate the following integrals.
(1) $\int_{\partial \Delta_{1}} \frac{d z}{z^{4}-1}$,
(2) $\int_{\partial \Delta_{2}} \frac{d z}{z^{4}-1}$,
(3) $\int_{\partial \Delta_{1}} z^{m}(1-z)^{n} d z$,
(4) $\int_{\partial \Delta_{2}} \log (|z|)$.
B. Suppose that f is holomorphic in the open unit disk $\Delta=\{z \in \mathbb{C}| | z \mid<1\}$.
(1) Suppose that there is a positive integer such that $|f(z)| \leq(1-|z|)^{-m}$. Prove that

$$
\frac{1}{n!}\left|f^{(n)}(0)\right| \leq \frac{(m+n)^{m+n}}{m^{m} n^{n}}
$$

(2) Suppose $f(z)=A z^{2}+B z+C$. Characterize the coefficients $A, B, C \in \mathbb{C}$ for which f is injective on Δ.
(3) Suppose $f: \Delta \rightarrow \Delta$ is injective and surjective. Show that there exist $a \in \Delta$ and $0 \leq \theta<2 \pi$ such that

$$
f(z)=e^{i \theta} \frac{z-a}{1-\bar{a} z}
$$

C. (1) Let $\Delta^{*}=\left\{z \in \mathbb{C}|0<|z|<1\}\right.$. Let $f: \Delta^{*} \rightarrow \mathbb{C}$ be holomorphic, and suppose there exists $M \in \mathbb{R}$ such that $x \leq M$ for all $z=x+i y \in \Delta^{*}$. Prove a is a removable singularity of f. Generalize as in Ahlfors 3.2, problem 5 .
(2) Suppose $f: \mathbb{C} \rightarrow \mathbb{C}$ is meromorphic with a pole at ∞ (among possibly others). Show that f is a quotient of two polynomials.

