Math 6350: Homework 3

Due: Friday, October 5

A. Let

$$\Delta_1 = \{ z \in \mathbb{C} \mid |z| < 2 \}$$
$$\Delta_2 = \left\{ z \in \mathbb{C} \mid |z - i| < \frac{1}{2} \right\}.$$

Evaluate the following integrals.

(1)
$$\int_{\partial\Delta_1} \frac{dz}{z^4 - 1},$$

(2)
$$\int_{\partial\Delta_2} \frac{dz}{z^4 - 1},$$

(3)
$$\int_{\partial\Delta_1} z^m (1 - z)^n dz,$$

(4)
$$\int_{\partial\Delta_2} \log(|z|).$$

~

B. Suppose that f is holomorphic in the open unit disk $\Delta = \{z \in \mathbb{C} \mid |z| < 1\}$.

(1) Suppose that there is a positive integer such that $|f(z)| \leq (1-|z|)^{-m}$. Prove that

$$\frac{1}{n!}|f^{(n)}(0)| \le \frac{(m+n)^{m+n}}{m^m n^n}.$$

- (2) Suppose $f(z) = Az^2 + Bz + C$. Characterize the coefficients $A, B, C \in \mathbb{C}$ for which f is injective on Δ .
- (3) Suppose $f: \Delta \to \Delta$ is injective and surjective. Show that there exist $a \in \Delta$ and $0 \le \theta < 2\pi$ such that

$$f(z) = e^{i\theta} \frac{z-a}{1-\bar{a}z}.$$

- C. (1) Let $\Delta^* = \{z \in \mathbb{C} \mid 0 < |z| < 1\}$. Let $f : \Delta^* \to \mathbb{C}$ be holomorphic, and suppose there exists $M \in \mathbb{R}$ such that $x \leq M$ for all $z = x + iy \in \Delta^*$. Prove a is a removable singularity of f. Generalize as in Ahlfors 3.2, problem 5.
 - (2) Suppose $f : \mathbb{C} \to \mathbb{C}$ is meromorphic with a pole at ∞ (among possibly others). Show that f is a quotient of two polynomials.