Math 6350: Homework 2

Due: Friday, September 21

A. Let $S \subseteq \mathbb{C}$ be an open set, and let $f: S \rightarrow \mathbb{C}$ be a holomorphic function. Prove the following statements.
(1) If $f^{\prime}(z)=0$ for all $z \in S$, then f is constant.
(2) If $f(z) \in \mathbb{R}$ for all $z \in S$, then f is constant.
(3) If $z \mapsto \overline{f(z)}$ is holomorphic, then f is constant.
(4) If $|f(z)|$ is constant, then f is constant.
B. (1) Give a precise definition of a single-valued branch of $\sqrt{1+z}+\sqrt{1-z}$, and prove it is holomorphic.
(2) Prove that $f(z)$ and $\overline{f(\bar{z})}$ are simultaneously holomorphic.
C. Assume f is holomorphic in an open set S with f^{\prime} continuous and $|f(z)-1|<1$ for $z \in S$. Show

$$
\int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z=0
$$

for every closed curve γ in S.

