Math 6350: Homework 2

Due: Friday, September 21

- A. Let $S \subseteq \mathbb{C}$ be an open set, and let $f: S \to \mathbb{C}$ be a holomorphic function. Prove the following statements.
 - (1) If f'(z) = 0 for all $z \in S$, then f is constant.
 - (2) If $f(z) \in \mathbb{R}$ for all $z \in S$, then f is constant.
 - (3) If $z \mapsto \overline{f(z)}$ is holomorphic, then f is constant.
 - (4) If |f(z)| is constant, then f is constant.
- B. (1) Give a precise definition of a single-valued branch of $\sqrt{1+z} + \sqrt{1-z}$, and prove it is holomorphic.
 - (2) Prove that f(z) and $\overline{f(\overline{z})}$ are simultaneously holomorphic.
- C. Assume f is holomorphic in an open set S with f' continuous and |f(z) 1| < 1 for $z \in S$. Show

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$$

for every closed curve γ in S.