Math 6250: Homework 6

1. (22.1) Let P_{R} be finitely generated and projective. Let $T=\operatorname{Tr}_{R}(P)$. Prove that
(a) $T^{2}=T, P T=T$, and $T=\operatorname{Tr}_{R}\left(\operatorname{Hom}_{R}(P, R)\right)$.
(b) Find isomorphisms $P \otimes_{R} T \rightarrow P$ and $T \otimes_{R} \operatorname{Hom}_{R}(P, R) \rightarrow \operatorname{Hom}_{R}(P, R)$.
(c) If $e \in R$ is an idempotent such that $P \cong e R$, then $T=R e R$.
2. Give the character table for $D_{2 n}$ for all n.
3. Given G-modules U and V, the action

$$
\begin{array}{ccc}
G \times\left(U \otimes_{\mathbb{F}} V\right) & \longrightarrow & U \otimes_{\mathbb{F}} V \\
(g, u \otimes v) & \mapsto & (g u) \otimes(g v)
\end{array}
$$

makes $U \otimes_{\mathbb{F}} V$ an G-module.
(a) Find a character formula for $\chi_{U \otimes V}$ in terms of χ_{U} and χ_{V}.
(b) Show that U 1-dimensional implies $U \otimes V$ irreducible if and only if V irreducible.
4. A character $\chi: G \rightarrow \mathbb{C}$ is real valued if $\chi(G) \subseteq \mathbb{R}$.
(a) Show with an example that χ_{ρ} real-valued does not imply that $\rho(G) \subseteq \mathrm{GL}_{\chi_{\rho}(1)}(\mathbb{R})$.
(b) Let U and V be irreducible G-modules with χ_{U} real-valued. Show that $U \otimes_{\mathbb{F}} V$ contains the trivial module if and only if $\chi_{U}=\chi_{V}$.

