Math 6250: Homework 6

- 1. (22.1) Let P_R be finitely generated and projective. Let $T = \text{Tr}_R(P)$. Prove that
 - (a) $T^2 = T$, PT = T, and $T = \text{Tr}_R(\text{Hom}_R(P, R))$.
 - (b) Find isomorphisms $P \otimes_R T \to P$ and $T \otimes_R \operatorname{Hom}_R(P, R) \to \operatorname{Hom}_R(P, R)$.
 - (c) If $e \in R$ is an idempotent such that $P \cong eR$, then T = ReR.
- 2. Give the character table for D_{2n} for all n.
- 3. Given G-modules U and V, the action

$$egin{array}{rcl} G imes (U\otimes_{\mathbb F}V)&\longrightarrow&U\otimes_{\mathbb F}V\ (g,u\otimes v)&\mapsto&(gu)\otimes(gv) \end{array}$$

makes $U \otimes_{\mathbb{F}} V$ an *G*-module.

- (a) Find a character formula for $\chi_{U\otimes V}$ in terms of χ_U and χ_V .
- (b) Show that U 1-dimensional implies $U \otimes V$ irreducible if and only if V irreducible.
- 4. A character $\chi: G \to \mathbb{C}$ is real valued if $\chi(G) \subseteq \mathbb{R}$.
 - (a) Show with an example that χ_{ρ} real-valued does not imply that $\rho(G) \subseteq \operatorname{GL}_{\chi_{\rho}(1)}(\mathbb{R})$.
 - (b) Let U and V be irreducible G-modules with χ_U real-valued. Show that $U \otimes_{\mathbb{F}} V$ contains the trivial module if and only if $\chi_U = \chi_V$.