Math 6250: Homework 1

1. Consider the symmetric group S_{4} and the dihedral group D_{8}. For each group G
(a) Give examples of two nonequivalent and nontrivial representations ρ and τ (be sure to show they are not equivalent),
(b) Construct the corresponding G-modules V_{ρ} and V_{τ},
(c) Decide whether the modules are reducible,
(d) Change bases in the module V_{ρ} and give the new corresponding representation ρ^{\prime} : $G \rightarrow G L_{n}(\mathbb{C})$.
2. Show that if $\rho: G \rightarrow G L(V)$ is a degree one representation, then $G / \operatorname{ker}(\rho)$ is an abelian group.
3. Let $\mathrm{GL}_{2}\left(\mathbb{F}_{q}\right)$ be the general linear group of rank 2 with entries in the field \mathbb{F}_{q} with q elements. Consider the subalgebra of $\mathbb{C G L}_{2}\left(\mathbb{F}_{q}\right)$ given by

$$
\mathcal{H}_{2}(q)=e_{B} \mathbb{C G L}_{2}\left(\mathbb{F}_{q}\right) e_{B}, \quad \text { where } \quad e_{B}=\frac{1}{q} \sum_{\substack{r, s \in \mathbb{F}_{q}^{\times} \\
t \in \mathbb{F}_{q}}}\left(\begin{array}{cc}
r & t \\
0 & s
\end{array}\right) .
$$

(This is the Iwahori-Hecke algebra $\mathcal{H}_{2}(q)$).
(a) Find a basis for $\mathcal{H}_{2}(q)$.
(b) Give formulas for multiplying basis elements.
(c) Construct a nontrivial $\mathcal{H}_{2}(q)$-module that is not the regular module.
4. (2.2 in book)
(a) Let M be a nonzero abelian group. We have a left action by left endomorphisms $\operatorname{End}^{l}(M)$ and a right action by right endomorphisms $\operatorname{End}^{r}(M)$. Show that M is a bimodule if and only if $\operatorname{End}^{l}(M)$ is commutative.
(b) Let \mathbb{C} be the complex numbers. Given a \mathbb{C}-module V with scalar multiplication $(\alpha, v) \mapsto \alpha v$, we obtain a second \mathbb{C}-module structure \bar{V} given by $(\alpha, v) \mapsto \bar{\alpha} v$. Show that neither of these \mathbb{C}-modules contains the other, and the two actions do not give a (\mathbb{C}, \mathbb{C})-bimodules structure to V.

