Math 6250: Homework 1

- 1. Consider the symmetric group S_4 and the dihedral group D_8 . For each group G
 - (a) Give examples of two nonequivalent and nontrivial representations ρ and τ (be sure to show they are not equivalent),
 - (b) Construct the corresponding G-modules V_{ρ} and V_{τ} ,
 - (c) Decide whether the modules are reducible,
 - (d) Change bases in the module V_{ρ} and give the new corresponding representation ρ' : $G \to GL_n(\mathbb{C}).$
- 2. Show that if $\rho: G \to GL(V)$ is a degree one representation, then $G/ker(\rho)$ is an abelian group.
- 3. Let $\operatorname{GL}_2(\mathbb{F}_q)$ be the general linear group of rank 2 with entries in the field \mathbb{F}_q with q elements. Consider the subalgebra of $\mathbb{C}\operatorname{GL}_2(\mathbb{F}_q)$ given by

$$\mathcal{H}_2(q) = e_B \mathbb{C}\mathrm{GL}_2(\mathbb{F}_q) e_B, \quad \text{where} \quad e_B = \frac{1}{q} \sum_{\substack{r,s \in \mathbb{F}_q^\times \\ t \in \mathbb{F}_q}} \begin{pmatrix} r & t \\ 0 & s \end{pmatrix}.$$

(This is the Iwahori-Hecke algebra $\mathcal{H}_2(q)$).

- (a) Find a basis for $\mathcal{H}_2(q)$.
- (b) Give formulas for multiplying basis elements.
- (c) Construct a nontrivial $\mathcal{H}_2(q)$ -module that is not the regular module.
- 4. (2.2 in book)
 - (a) Let M be a nonzero abelian group. We have a left action by left endomorphisms $\operatorname{End}^{l}(M)$ and a right action by right endomorphisms $\operatorname{End}^{r}(M)$. Show that M is a bimodule if and only if $\operatorname{End}^{l}(M)$ is commutative.
 - (b) Let \mathbb{C} be the complex numbers. Given a \mathbb{C} -module V with scalar multiplication $(\alpha, v) \mapsto \alpha v$, we obtain a second \mathbb{C} -module structure \overline{V} given by $(\alpha, v) \mapsto \overline{\alpha} v$. Show that neither of these \mathbb{C} -modules contains the other, and the two actions do not give a (\mathbb{C}, \mathbb{C}) -bimodules structure to V.