Math 6140: Homework 7

1. $13.2: 14,15,19,20$
2. 13.3: 4
3. $13.4: 4,5,6$
4. Let $\mathbb{F} \subseteq \mathbb{K} \subseteq \mathbb{L}$. Suppose $\alpha \in \mathbb{L}$ is algebraic over \mathbb{F} and let $f=\min _{\alpha, \mathbb{K}}(x)$. Show that the roots in \mathbb{L} and coefficients of f are algebraic over \mathbb{F}.
5. Suppose $x^{p}-1$ factors completely over a field \mathbb{F} with p prime. Show that for each $a \in \mathbb{F}$, either $x^{p}-a$ factors completely in $\mathbb{F}[x]$ or is irreducible in $\mathbb{F}[x]$ (Hint: note that the roots of $x^{p}-a$ all have the same degree).
