Math 4140: Homework 9

Due April 8, 2009

1. Let \mathfrak{g} be the 3-dimensional Lie algebra

$$\mathfrak{g} = \mathbb{C}$$
-span $\{x, y, z\},\$

where

$$[x, y] = z,$$
 $[y, z] = x,$ $[z, x] = y.$

- (a) Show that \mathfrak{g} is isomorphic to $\mathfrak{o}_3(\mathbb{C})$ (see Problem 4 on the midterm).
- (b) Show that \mathfrak{g} is isomorphic to $\mathfrak{sl}_2(\mathbb{C})$ in two ways: by an explicit isomorphism and in some other way.
- 2. Let J be an $n \times n$ matrix with entries in a field \mathbb{F} . Define

 $\mathfrak{gl}_n(J,\mathbb{F}) = \{ x \in \mathfrak{gl}_n(\mathbb{F}) \mid \operatorname{Transpose}(x)J + Jx = 0 \}.$

- (a) Show that $\mathfrak{gl}_n(J,\mathbb{F})$ is a Lie subalgebra of $\mathfrak{gl}_n(\mathbb{F})$.
- (b) Find J such that $\mathfrak{gl}_n(J,\mathbb{F}) = \mathfrak{o}_n(\mathbb{F})$.
- (c) Find $\mathfrak{gl}_2(J,\mathbb{R})$, if $J = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.
- (d) Does there exist a matrix J such that $\mathfrak{gl}_2(J,\mathbb{F})$ is the set of all diagonal matrices in $\mathfrak{gl}_2(J,\mathbb{F})$?

Remark. It is worth comparing this problem with Problem 1 on Homework 1.

3. The Heisenberg Lie algebra is the Lie algebra

$$\mathfrak{u}_3 = \left\{ \left(\begin{array}{ccc} 0 & a & c \\ 0 & 0 & b \\ 0 & 0 & 0 \end{array} \right) \mid a,b,c \in \mathbb{F} \right\}.$$

- (a) Find \mathfrak{u}'_3 explicitly.
- (b) Find $Z(\mathfrak{u}_3)$ explicitly.
- (c) Show that \mathfrak{u}_3 is the unique 3-dimensional Lie algebra \mathfrak{g} such that $\dim(\mathfrak{g}) = \dim(\mathfrak{u}'_3)$ and $\mathfrak{g}' \subseteq Z(\mathfrak{g})$.