Math 4140: Homework 9

Due April 8, 2009

1. Let \mathfrak{g} be the 3 -dimensional Lie algebra

$$
\mathfrak{g}=\mathbb{C}-\operatorname{span}\{x, y, z\}
$$

where

$$
[x, y]=z, \quad[y, z]=x, \quad[z, x]=y .
$$

(a) Show that \mathfrak{g} is isomorphic to $\mathfrak{o}_{3}(\mathbb{C})$ (see Problem 4 on the midterm).
(b) Show that \mathfrak{g} is isomorphic to $\mathfrak{s l}_{2}(\mathbb{C})$ in two ways: by an explicit isomorphism and in some other way.
2. Let J be an $n \times n$ matrix with entries in a field \mathbb{F}. Define

$$
\mathfrak{g l}_{n}(J, \mathbb{F})=\left\{x \in \mathfrak{g l}_{n}(\mathbb{F}) \mid \operatorname{Transpose}(x) J+J x=0\right\} .
$$

(a) Show that $\mathfrak{g l}_{n}(J, \mathbb{F})$ is a Lie subalgebra of $\mathfrak{g l}_{n}(\mathbb{F})$.
(b) Find J such that $\mathfrak{g l}_{n}(J, \mathbb{F})=\mathfrak{o}_{n}(\mathbb{F})$.
(c) Find $\mathfrak{g l}_{2}(J, \mathbb{R})$, if $J=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$.
(d) Does there exist a matrix J such that $\mathfrak{g l}_{2}(J, \mathbb{F})$ is the set of all diagonal matrices in $\mathfrak{g l}_{2}(J, \mathbb{F})$?

Remark. It is worth comparing this problem with Problem 1 on Homework 1.
3. The Heisenberg Lie algebra is the Lie algebra

$$
\mathfrak{u}_{3}=\left\{\left.\left(\begin{array}{ccc}
0 & a & c \\
0 & 0 & b \\
0 & 0 & 0
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{F}\right\} .
$$

(a) Find $\mathfrak{u}_{3}^{\prime}$ explicitly.
(b) Find $Z\left(\mathfrak{u}_{3}\right)$ explicitly.
(c) Show that \mathfrak{u}_{3} is the unique 3-dimensional Lie algebra \mathfrak{g} such that $\operatorname{dim}(\mathfrak{g})=\operatorname{dim}\left(\mathfrak{u}_{3}^{\prime}\right)$ and $\mathfrak{g}^{\prime} \subseteq Z(\mathfrak{g})$.

