Math 4140: Homework 8

Due March 11, 2009

1. Find the determinants of all the Cartan matrices for the irreducible root systems.
2. Fix a field \mathbb{F}. For an $n \times n$ matrix $A \in M_{n}(\mathbb{F})$, define

$$
\exp (A)=\operatorname{Id}_{n}+t A+\frac{(t A)^{2}}{2!}+\frac{(t A)^{3}}{3!}+\cdots
$$

Let $e_{i j}$ be the $n \times n$ matrix with 1 in the (i, j) and zeroes elsewhere. That is,

$$
\left(e_{i j}\right)_{k l}=\delta_{i k} \delta_{j l} .
$$

(a) For $t \in \mathbb{F}$ and $1 \leq i, j \leq n$, find

$$
\exp \left(t e_{i j}\right)
$$

How does the characteristic of the field matter for this computation?
(b) Show that for $1 \leq i \neq j \leq n$, as groups

$$
\left\langle\exp \left(t e_{i j}\right) \mid t \in \mathbb{F}\right\rangle
$$

is isomorphic to the additive group of \mathbb{F} (the set \mathbb{F} under addition).
(c) For $1 \leq i<j \leq n$ and $1 \leq k<l \leq n$, compare

$$
e_{i j} e_{k l}-e_{k l} e_{i j} \quad \text { and } \quad \exp \left(e_{i j}\right) \exp \left(e_{k l}\right) \exp \left(e_{i j}\right)^{-1} \exp \left(e_{k l}\right)^{-1}
$$

Describe how one determines the other and vice-versa.
The exponential map gives a connection between the matrix ring $M_{n}(\mathbb{F})$ and the group $\mathrm{GL}_{n}(\mathbb{F})$. This is a fundamental connection in Lie theory.
3. For a root system $R \subseteq V$, the corresponding weight lattice is the set

$$
\Lambda=\left\{\lambda \in V \mid\left(\lambda, \alpha^{\vee}\right) \in \mathbb{Z}, \alpha \in R\right\} .
$$

(a) Show that Λ is an additive group.
(b) Show that the Weyl group W of R fixes Λ.
(c) For $R\left(A_{2}\right)$, draw in the weights on the A_{2}-graph paper.

