Math 4140: Homework 7

Due March 4, 2009

1. For the following graphs,
(a) Find the corresponding Cartan matrix,
(b) Find a set B of basis vectors in \mathbb{R}^{6} such that the graph is the Dynkin diagram of B.

2. Suppose R is a root system in V. Let

$$
R^{\vee}=\left\{\alpha^{\vee} \mid \alpha \in R\right\}
$$

(a) Show that R^{\vee} is a root system of V.
(b) Show that its Cartan matrix is the transpose of the Cartan matrix of R.
(c) Show that $R\left(B_{n}\right)^{\vee}=R\left(C_{n}\right)$, and $R\left(D_{n}\right)^{\vee}=R\left(D_{n}\right)$ (see Homework 6).
(d) Explain why R and R^{\vee} are not always isomorphic?

We typically call R^{\vee} the dual root system to R.
3. Let

$$
C_{n}=\left(\begin{array}{ccccc}
2 & -1 & 0 & \cdots & 0 \\
-1 & 2 & -1 & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & -1 & 2 & -1 \\
0 & \cdots & 0 & -1 & 2
\end{array}\right)
$$

Show that
(a) $\operatorname{det}\left(C_{n}\right)=2 \operatorname{det}\left(C_{n-1}\right)-\operatorname{det}\left(C_{n-2}\right)$ for $n \geq 3$,
(b) Find a formula for $\operatorname{det}\left(C_{n}\right)$ (a non-recursive formula).

Hint: Look up the Laplace expansion for the determinant of a matrix.

