Math 4140: Homework 6

Due February 25, 2009

- 1. Let R be a root system with a base B.
 - (a) Let $\gamma \in R$. Show that the set

$$s_{\gamma}(B) = \{s_{\gamma}(\alpha) \mid \alpha \in B\}$$

is also a base for R.

- (b) Deduce that if W is the Weyl group of R, then w(B) is a base for R for any $w \in W$.
- 2. Let W be the Weyl group of a root system R. Show that for $w \in W$ and $\alpha \in R$,

$$ws_{\alpha}w^{-1} = s_{w(\alpha)}.$$

- 3. For each of the following, show that it is an irreducible root system in the vector space spanned by the vectors, and find a base.
 - (a) $R(B_n) = \{\pm e_k, \pm (e_i + e_j), \pm (e_i e_j) \mid 1 \le k \le n, 1 \le i < j \le n\}$
 - (b) $R(C_n) = \{\pm 2e_k, \pm (e_i + e_j), \pm (e_i e_j) \mid 1 \le k \le n, 1 \le i < j \le n\}$
 - (c) $R(D_n) = \{ \pm (e_i + e_j), \pm (e_i e_j) \mid 1 \le i < j \le n \}$
- 4. For one of the three root systems of Problem 3, do the following.
 - (a) For $\alpha, \beta \in B$ (the base you found in Problem 3), find the smallest m such that

$$(s_{\alpha}s_{\beta})^m = 1.$$

(b) Do you see any relationship between m and the angle between α and β ? Can you formulate this in a formula for m?