Math 4140: Homework 5

Due February 18, 2009

1. Suppose s_{u} and s_{v} are reflections in the hyperplanes H_{u} and H_{v}, respectively. Show that if H_{u} and H_{v} are orthogonal, then s_{u} and s_{v} commute. Is this true for any other angle between H_{u} and H_{v} ?
2. Let $V=\mathbb{R}^{3}=\mathbb{R}-\operatorname{span}\left\{e_{1}, e_{2}, e_{3}\right\}$, and let $(\cdot, \cdot): V \times V \rightarrow \mathbb{R}$ be the usual inner product. For each of the following collection of hyperplanes, identify the angles between the hyperplanes, and the reflection group the reflections in these hyperplanes generate (up to isomorphism).
(a) $H_{e_{1}}, H_{e_{2}}$, and $H_{e_{3}}$.
(b) $H_{e_{1}-e_{2}}, H_{e_{3}-e_{2}}$, and $H_{e_{1}+e_{2}+e_{3}}$.
(c) $H_{e_{2}-e_{1}}, H_{e_{2}-e_{3}}$, and $H_{e_{1}+e_{2}}$.
3. Let

$$
E=\left\{a_{1} e_{1}+a_{2} e_{2}+\cdots+a_{n} e_{n} \in \mathbb{R}^{n} \mid a_{1}+a_{2}+\cdots+a_{n}=0, a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}\right\}
$$

(a) Show that E is a subspace of \mathbb{R}^{n},
(b) Find the dimension of E,
(c) Show that

$$
R=\left\{e_{i}-e_{j} \mid 1 \leq i, j \leq n\right\}
$$

is a root system of E (be sure to check all the axioms).

