Math 4140: Homework 4

Due February 11, 2009

1. Find examples of the following for $V=\mathbb{F}^{n}$.
(a) A degenerate symmetric bilinear form.
(b) A nondegenerate non-symmetric bilinear form.
2. Let $(\cdot, \cdot): V \times V \rightarrow \mathbb{F}$ be a bilinear form. Suppose V has a basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$. Consider the matrix

$$
M=\left(\begin{array}{cccc}
\left(v_{1}, v_{1}\right) & \left(v_{1}, v_{2}\right) & \ldots & \left(v_{1}, v_{n}\right) \\
\left(v_{2}, v_{1}\right) & \left(v_{2}, v_{2}\right) & \ddots & \vdots \\
\vdots & \ddots & \ddots & \left(v_{n-1}, v_{n}\right) \\
\left(v_{n}, v_{1}\right) & \cdots & \left(v_{n}, v_{n-1}\right) & \left(v_{n}, v_{n}\right)
\end{array}\right)
$$

(a) What is M when $V=\mathbb{F}^{n}$, with the natural basis, and (\cdot, \cdot) is the dot product?
(b) Show that in general

$$
\left(\sum_{i=1}^{n} a_{i} v_{i}, \sum_{j=1}^{n} b_{j} v_{j}\right)=\left(a_{1}, a_{2}, \ldots, a_{n}\right) M\left(\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right) .
$$

(c) Show that (\cdot, \cdot) is nondegenerate if and only if M is invertible.

Hint: Show that the column vectors of M are linearly independent if and only if (\cdot, \cdot) is nondegenerate.
3. Let $(\cdot, \cdot): V \times V \rightarrow \mathbb{F}$ be a symmetric bilinear form. Suppose V has a basis $\mathcal{B}=\left\{v_{1}, \ldots, v_{n}\right\}$. Show that (\cdot, \cdot) is nondegenerate if and only if there exists a basis $\mathcal{B}^{\prime}=\left\{v_{1}^{\prime}, v_{2}^{\prime}, \ldots, v_{n}^{\prime}\right\}$ such that $\left(v_{i}, v_{j}^{\prime}\right)=\delta_{i j}$.
Hint: For the hard direction, combine the facts that $V \rightarrow V^{*}(v \mapsto(\cdot, v))$ is an isomorphism if (\cdot, \cdot) is nondegenerate, and that V^{*} has a particularly nice natural basis.

