Math 4140: Homework 3

Due February 4, 2009

- 1. Let \mathbb{F} be a field, and let $m, n \in \mathbb{Z}_{\geq 1}$.
 - (a) Find the dimension of $M_{m \times n}(\mathbb{F})$ by constructing an explicit basis.
 - (b) A symmetric matrix is a matrix that is equal to its transpose matrix. Show that the set S of symmetric matrices is a subspace of $M_n(\mathbb{F})$,
 - (c) Find the dimension of S by constructing an explicit basis for S.
- 2. Let $\mathbb{Q}[x]$ be the vector space of polynomials in the variable x with coefficients in \mathbb{Q} . Let $f(x) \in \mathbb{Q}[x]$.
 - (a) Show that $I = f(x)\mathbb{Q}[x]$ is a subspace of $\mathbb{Q}[x]$.
 - (b) Find an explicit basis to find the dimension of the quotient vector space $\mathbb{Q}[x]/f(x)\mathbb{Q}[x]$.
- 3. Let U and V be subspaces of a finite dimensional vector space W. Define

$$U + V = \{ u + v \mid u \in U, v \in V \}.$$

- (a) Show that U + V is a subspace of W.
- (b) Show that

$$\dim(U+V) = \dim(U) + \dim(V) - \dim(U \cap V).$$

Hint: Construct a basis for $U \cap V$, and supplement it to get bases \mathcal{B}_U and \mathcal{B}_V for U and V, respectively. Show that you now have a basis for U + V.

(c) A complement $V \subseteq W$ to a subspace $U \subseteq W$ is a subspace such that U + V = W and $U \cap V = \{0\}$. Show that every subspace of W has a complement.