Math 4140: Homework 3

Due February 4, 2009

1. Let \mathbb{F} be a field, and let $m, n \in \mathbb{Z}_{\geq 1}$.
(a) Find the dimension of $M_{m \times n}(\mathbb{F})$ by constructing an explicit basis.
(b) A symmetric matrix is a matrix that is equal to its transpose matrix. Show that the set S of symmetric matrices is a subspace of $M_{n}(\mathbb{F})$,
(c) Find the dimension of S by constructing an explicit basis for S.
2. Let $\mathbb{Q}[x]$ be the vector space of polynomials in the variable x with coefficients in \mathbb{Q}. Let $f(x) \in \mathbb{Q}[x]$.
(a) Show that $I=f(x) \mathbb{Q}[x]$ is a subspace of $\mathbb{Q}[x]$.
(b) Find an explicit basis to find the dimension of the quotient vector space $\mathbb{Q}[x] / f(x) \mathbb{Q}[x]$.
3. Let U and V be subspaces of a finite dimensional vector space W. Define

$$
U+V=\{u+v \mid u \in U, v \in V\}
$$

(a) Show that $U+V$ is a subspace of W.
(b) Show that

$$
\operatorname{dim}(U+V)=\operatorname{dim}(U)+\operatorname{dim}(V)-\operatorname{dim}(U \cap V)
$$

Hint: Construct a basis for $U \cap V$, and supplement it to get bases \mathcal{B}_{U} and \mathcal{B}_{V} for U and V, respectively. Show that you now have a basis for $U+V$.
(c) A complement $V \subseteq W$ to a subspace $U \subseteq W$ is a subspace such that $U+V=W$ and $U \cap V=\{0\}$. Show that every subspace of W has a complement.

