Math 4140: Homework 11

Due April 21, 2009

1. Find explicit $\mathfrak{s l}_{2}(\mathbb{C})$-module isomorphisms between
(a) The trivial representation of $\mathfrak{s l}_{2}(\mathbb{C})$ and V_{0},
(b) The natural representation of $\mathfrak{s l}_{2}(\mathbb{C})$ and V_{1},
(c) The adjoint representation of $\mathfrak{s l}_{2}(\mathbb{C})$ and V_{2}.
2. Let V_{d} be the d-dimensional irreducible $\mathfrak{s l}_{2}(\mathbb{C})$-module. Let $v \in V_{d}$ be such that $e \cdot v=0$, so that

$$
\left\{v, f \cdot v, f^{2} \cdot v, \ldots, f^{d-1} \cdot v\right\}
$$

is a basis for V_{d}.
(a) Find $c_{1} \in \mathbb{C}$ such that $e \cdot f \cdot v=c_{1} \cdot v$.
(b) Let $c_{k} \in \mathbb{C}$ be such that

$$
e \cdot f^{k} \cdot v=c_{k} f^{k-1} \cdot v .
$$

Find a formula for c_{k} and prove that your formula is correct (Hint: Induction works well here).
3. Let V be a finite-dimensional $\mathfrak{s l}_{2}(\mathbb{C})$-module (not necessarily irreducible). Define

$$
\begin{array}{cccc}
C: V & \longrightarrow & V \\
v & \mapsto & \left(e f+f e+\frac{1}{2} h^{2}\right) \cdot v
\end{array}
$$

(a) Show that C is an $\mathfrak{s l}_{2}(\mathbb{C})$-module homomorphism.
(b) If $C: V_{d} \rightarrow V_{d}$, then by Schur's Lemma, $C(v)=c v$ for some $c \in \mathbb{C}$. Show that $c=d(d+2) / 2$.

