Math 4140: Homework 10

Due April 15, 2009

- 1. Let $\mathfrak g$ be the Heisenberg algebra.
 - (a) Specify a basis for \mathfrak{g} ,
 - (b) Based on this basis compute the adjoint representation $\mathrm{ad} : \mathfrak{g} \to \mathfrak{gl}_3(\mathbb{C})$.
 - (c) Construct the corresponding \mathfrak{g} -module \mathfrak{g} .
 - (d) Is \mathfrak{g} an irreducible \mathfrak{g} -module?
 - (e) Find another nonisomorphic, nonzero g-module, and determine whether it is irreducible.
- 2. The "natural" representation of a Lie subalgebra $\mathfrak{h} \subseteq \mathfrak{gl}_n(\mathbb{C})$ is the representation that sends

$$\rho(h) = h, \quad \text{for all } h \in \mathfrak{h}$$

Let \mathfrak{b}_n be the Lie subalgebra of upper-triangular matrices,

$$\mathfrak{b}_n = \{ x \in \mathfrak{gl}_n(\mathbb{C}) \mid x_{ij} \neq 0, \text{ implies } i \leq j \}.$$

- (a) Construct the \mathfrak{b}_n -module V corresponding to the natural representation of \mathfrak{b}_n .
- (b) Show that V is not irreducible.
- (c) Show that \mathfrak{b}_n is not semi-simple by finding an irreducible submodule of V that is contained in every submodule of V.
- (d) Explain why (c) shows that \mathfrak{b}_n is not semi-simple.

3. Let

$$J = \left(\begin{array}{rrr} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{array} \right).$$

- (a) Find a natural basis for $\mathfrak{gl}_3(J,\mathbb{C})$.
- (b) Show that $\mathfrak{gl}_3(J,\mathbb{C}) \cong \mathfrak{sl}_2(\mathbb{C})$. (Therefore $\mathfrak{gl}_3(J,\mathbb{C}) \cong \mathfrak{o}_3(\mathbb{C})$). In fact, using this kind of J for $\mathfrak{o}_n(\mathbb{C})$ will be more useful for us in general.