## 1 Introduction to $\mathrm{EAT}_{\mathrm{E}} \mathrm{X}$

The section has a particular style, and normal text writing has another typical style. Another nice feature of text writing is that it automatically does justifying, and paragraphs.

To start a new paragraph, just skip a line in the code.
Remark 1. Another remark.

### 1.1 Generating functions so far

So far we've seen:

1. We have

$$
\frac{x}{1-x-x^{2}}=\sum_{n=0}^{\infty} f_{n} x^{n},
$$

where $f_{0}, f_{1}, \ldots$ is the Fibonacci sequence.
2. We have

$$
\frac{1-\sqrt{1-4 x}}{2 x}=\sum_{n=0}^{\infty} c_{n} x^{n}
$$

where $c_{0}, c_{1}, \ldots$ is the Catalan sequence.
3. We have

$$
(1+x)^{m}=\sum_{k=0}^{\infty}\binom{m}{k} x^{k},
$$

where $\binom{m}{0},\binom{m}{1}, \ldots$ are generalized binomial coefficients.

### 1.2 More things to count

We will be counting ways of breaking things into pieces, such as
(a) Integer partitions - ways of breaking numbers into parts,
(b) Integer compositions - ways of breaking numbers into parts but keeping track of order,
(c) Set partitions - ways of breaking up sets into parts,
(d) Set compositions - ways of breaking up sets into parts but keeping track of order.

### 1.2.1 Set partitions

A set partition $A=\left\{A_{1}, A_{2}, \ldots, A_{\ell}\right\}$ of a set $S$ is a set of subsets $\left\{A_{1}, \ldots, A_{\ell}\right\}$ with $A_{j} \subseteq S$ for $1 \leq j \leq \ell$, such that

- $S=A_{1} \cup A_{2} \cup \cdots \cup A_{\ell}$,
- for each $1 \leq i<j \leq \ell$, we have $A_{i} \cap A_{j}=\emptyset$.

Remark 2. We usually refer to the subsets of a set partition as the blocks or parts of the set partition.

These lead to the following numbers.

$$
\begin{array}{rlr}
b_{n} & =\#\left\{\begin{array}{c}
\text { set partitions } \\
\text { of }\{1,2, \ldots, n\}
\end{array}\right\} & \text { (Bell numbers) } \\
S(n, k) & =\#\left\{\begin{array}{c}
\text { set partitions } \\
\text { of }\{1,2, \ldots, n\} \\
\text { with } k \text { blocks }
\end{array}\right\} & \text { (Stirling numbers of the second kind) }
\end{array}
$$

### 1.3 Other things to pay attention to

Note that " a " is in a different font than $a$. Matrices are done with the array environment

$$
\left(\begin{array}{c|cccc}
1 & 2 & 3 & 4 & 5 \\
\hline 0 & 1 & 2 & 3 & 4 \\
-1 & \text { this } & \binom{4}{2} & x^{3} & 0
\end{array}\right) .
$$

To do $\mathbb{Z}$ one uses the math blackboard bold font. I use the macro $\mathbb{Z}$. Greek letters are easy: $\alpha, \beta, \gamma$, or $\Gamma, \Xi$.

Quote are a little funny. If I just do quotes the "usual" way, then it looks wrong, so instead for the begin quotes I need to use "this" and then the usual thing for finishing.
$a \in B$ but $b \notin A$. Let $f: A \rightarrow B$ be a function, or let

$$
f: A \longrightarrow B
$$

be a function.
By Remark 2, we have that BLAH, and by Section 1.2.1, we have BLAH.

