Math 3170: Homework 6

Due: October 13, 2010

1. How many 2 -digit positive integers are relatively prime to both 2 and 3 ?
2. For $m \in \mathbb{Z}_{\geq 1}$, let

$$
\phi(m)=\#\{j \in\{1,2, \ldots, m\} \mid \operatorname{gcd}(m, j)=1\} .
$$

Let p, q, r be prime numbers. What is $\phi(p q r)$?
3. For $k \in \mathbb{Z}_{\geq 1}$ compute the coefficients a_{n} in

$$
e^{k x}=\sum_{n \geq 0} a_{n} \frac{x^{n}}{n!}
$$

in two ways to show that

$$
k^{n}=\sum_{\substack{m_{1}+m_{2}+\cdots+m_{k}=n \\ m_{1}, m_{2}, \ldots, m_{k} \in \mathbb{Z} \geq 0}}\binom{n}{m_{1}, m_{2}, \ldots, m_{k}} .
$$

4. Let

$$
A(x)=\sum_{n \geq 0} a_{n} x^{n} .
$$

(a) Describe the sequence coming from the ordinary generating function

$$
\frac{A(x)}{1-x} .
$$

(b) Describe the sequence coming from the exponential generating function

$$
\frac{A(x)}{1-x}
$$

5. (a) Let

$$
f_{k, n}=\#\left\{\begin{array}{c}
\text { set partitions of }\{1,2, \ldots, n\} \\
\text { into } k \text { subsets that contain } \\
\text { at least } 2 \text { elements }
\end{array}\right\} .
$$

Find and prove a formula for $f_{k, n}$ in terms of the Stirling numbers of the second kind.
(b) Let

$$
f_{n}=\#\left\{\begin{array}{c}
\text { set partitions of }\{1,2, \ldots, n\} \\
\text { into subsets that contain } \\
\text { at least } 2 \text { elements }
\end{array}\right\} .
$$

Find and prove a formula for f_{n} in terms of the Bell numbers.

