Math 3170: Homework 6

Due: October 13, 2010

- 1. How many 2-digit positive integers are relatively prime to both 2 and 3?
- 2. For $m \in \mathbb{Z}_{\geq 1}$, let

$$\phi(m) = \#\{j \in \{1, 2, \dots, m\} \mid \gcd(m, j) = 1\}.$$

Let p, q, r be prime numbers. What is $\phi(pqr)$?

3. For $k \in \mathbb{Z}_{\geq 1}$ compute the coefficients a_n in

$$e^{kx} = \sum_{n \ge 0} a_n \frac{x^n}{n!}$$

in two ways to show that

$$k^{n} = \sum_{\substack{m_{1}+m_{2}+\dots+m_{k}=n\\m_{1},m_{2},\dots,m_{k}\in\mathbb{Z}_{\geq 0}}} \binom{n}{m_{1},m_{2},\dots,m_{k}}.$$

4. Let

$$A(x) = \sum_{n \ge 0} a_n x^n$$

(a) Describe the sequence coming from the ordinary generating function

$$\frac{A(x)}{1-x}.$$

(b) Describe the sequence coming from the exponential generating function

$$\frac{A(x)}{1-x}.$$

5. (a) Let

$$f_{k,n} = \# \left\{ \begin{array}{c} \text{set partitions of } \{1, 2, \dots, n\} \\ \text{into } k \text{ subsets that contain} \\ \text{at least 2 elements} \end{array} \right\}$$

Find and prove a formula for $f_{k,n}$ in terms of the Stirling numbers of the second kind. (b) Let

$$f_n = \# \left\{ \begin{array}{l} \text{set partitions of } \{1, 2, \dots, n\} \\ \text{into subsets that contain} \\ \text{at least 2 elements} \end{array} \right\}$$

Find and prove a formula for f_n in terms of the Bell numbers.