Math 3170: Homework 3

Due: September 15, 2010

1. Prove

$$
3^{n}=\sum_{k=0}^{n} 2^{k}\binom{n}{k}
$$

in two different ways.
2. Prove

$$
\binom{2 n}{n}=\sum_{k=0}^{n}\binom{n}{k}^{2}
$$

in two different ways.
3. What is the coefficient of x^{n} in the power series $\sqrt[3]{1-2 x}$?
4. (a) What is the power series for

$$
\frac{1}{(1-x)^{2}} ?
$$

(b) Compute the first ten terms of the sequence

$$
h_{n}=h_{n-1}+h_{n-2}-h_{n-3},
$$

with $h_{0}=0, h_{1}=1, h_{2}=1$.
(c) Use generating functions to find a closed formula for h_{n} (although it is easy to do so without generating functions).
5. Say a sequence $a_{1}, a_{2}, \ldots, a_{2 n}$ of n ones and n minus ones is good if for each $1 \leq k \leq 2 n$, the sum $a_{1}+a_{2}+\cdots+a_{k} \geq 0$. Let

$$
\mathrm{se}_{n}=\#\{\operatorname{good} \text { sequences of length } 2 n\} .
$$

For example,

$$
\begin{aligned}
\mathrm{se}_{3} & =\#\left\{\begin{array}{c}
(1,-1,1,-1,1,-1),(1,1,-1,-1,1,-1),(1,-1,1,1,-1,-1) \\
(1,1,1,-1,-1,-1),(1,1,-1,1,-1,-1)
\end{array}\right\} \\
& =5
\end{aligned}
$$

Show that se_{n} is the nth Catalan number by constructing a bijection between Dyck paths and good sequences.

